How can the stock recruitment relationship of the Barents Sea capelin (Mallotus villosus) be improved by incorporating biotic and abiotic factors?

2004 ◽  
Vol 23 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Nina Mikkelsen ◽  
Torstein Pedersen
1997 ◽  
Vol 130 (2) ◽  
pp. 309-313 ◽  
Author(s):  
G. Huse ◽  
H. Gjøsæter

2017 ◽  
Vol 75 (2) ◽  
pp. 621-630 ◽  
Author(s):  
Hiroko K Solvang ◽  
Sam Subbey ◽  
Anna S J Frank

Abstract The dynamics of marine populations are usually forced by biotic and abiotic factors occurring at different intensity levels and time scales. Deriving the time frame within which each factor has a causal influence is important for predicting population trajectories. This paper presents a statistical methodology for establishing (i) the strength of causal coupling between population dynamics and environmental (biotic and abiotic) factors, and (ii) the time scales over which causal covariates have significant influence on the population dynamics. The methodology is based on combining a multivariate autoregressive model fit to data (to determine causal direction) with a quantification of the RPC of covariates in frequency domain (to quantify the strength of connection). The methodology is applied to test the existence of causal coupling between the capelin biomass and a selected number of covariates identified in the literature.


2009 ◽  
Vol 66 (10) ◽  
pp. 1693-1706 ◽  
Author(s):  
Elvar H. Hallfredsson ◽  
Torstein Pedersen

Predation has been suggested as a cause of substantial mortality of fish larvae to the degree that it might influence recruitment. This field-based study concludes that juvenile herring ( Clupea harengus ) as small pelagic predator can significantly affect mortality rates of the planktonic larvae of capelin ( Mallotus villosus ) in the Barents Sea. Surveys were carried out in the summers of 2001 and 2003. In 2001, juvenile herring were widely distributed and overlapped with capelin larvae over a wide area, whereas in 2003, the herring were more aggregated. The study focused on predation in the areas of predator–prey overlap. Capelin larvae were observed in the herring stomachs at 11 of 24 stations and at 8 of 16 stations where herring were caught in 2001 and 2003, respectively. At those stations, an estimated 7.3% and 9.9% of the capelin larvae were eaten by herring per day in 2001 and 2003, respectively. Statistical models revealed that density of capelin larvae and copepods and occurrence of euphausiids in the stomachs affected the number of capelin larvae per predator stomach. A simplified model with only capelin larvae density as predictor was converted to a functional response relationship using an experimentally derived digestion rate estimate for capelin larvae in herring stomachs.


Sign in / Sign up

Export Citation Format

Share Document