scholarly journals f-Visual evoked potentials (f VEPs), nystagmus vs. motor & neurological disorders in quadriplegia

2008 ◽  
Vol 86 ◽  
pp. 0-0
Author(s):  
S TIGANITA ◽  
N KOZEIS ◽  
E TYRADELIS ◽  
Z GATZIOUFAS ◽  
D ZAFEIRIOU
2019 ◽  
Vol 184 (Supplement_1) ◽  
pp. 584-592 ◽  
Author(s):  
Craig Versek ◽  
Armen Rissmiller ◽  
Anthony Tran ◽  
Munish Taya ◽  
Kaushik Chowdhury ◽  
...  

Abstract A new product prototype system for diagnosing vision and neurological disorders, called NeuroDotVR, is described herein: this system utilizes a novel wireless NeuroDot brain sensor [Versek C et al. J Neural Eng. 2018 Aug; 15(4):046027] that quantitatively measures visual evoked potentials and fields resulting from custom visual stimuli displayed on a smartphone housed in a virtual reality headset. The NeuroDot brain sensor is unique in that it can be operated both in regular electroencephalography mode, as well as a new electric field encephalography mode, which yields improvements in signal sensitivity and provides new diagnostic information. Steady state and transient visual evoked potentials and fields using reversing checkerboard stimuli are presented with case studies in amblyopia, glaucoma, and dark adaptation. These preliminary data sets highlight potential clinical applications that may be pursued in further product development and scientific studies.


2012 ◽  
Author(s):  
Jeffrey S. Bedwell ◽  
Yuri Rassovsky ◽  
Pamela Butler ◽  
Andrea Ranieri ◽  
Christopher Spencer ◽  
...  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


Sign in / Sign up

Export Citation Format

Share Document