Roles of human antimicrobial peptides in innate immune defense at the ocular surface: arming and alarming corneal and conjunctival epithelial cells

2011 ◽  
Vol 89 (s248) ◽  
pp. 0-0
Author(s):  
F PAULSEN ◽  
F GARREIS
2010 ◽  
Vol 134 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Fabian Garreis ◽  
Thomas Schlorf ◽  
Dieter Worlitzsch ◽  
Philipp Steven ◽  
Lars Bräuer ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jaquelina Julia Guzmán-Rodríguez ◽  
Alejandra Ochoa-Zarzosa ◽  
Rodolfo López-Gómez ◽  
Joel E. López-Meza

Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.


2011 ◽  
Vol 79 (6) ◽  
pp. 2250-2256 ◽  
Author(s):  
Laura McMahon ◽  
Kyell Schwartz ◽  
Ozlem Yilmaz ◽  
Eleith Brown ◽  
Lisa K. Ryan ◽  
...  

ABSTRACTHuman gingival epithelial cells (GEC) produce peptides, such as β-defensins and the cathelicidin LL-37, that are both antimicrobial and that modulate the innate immune response. In myeloid and airway epithelial cells, the active form of vitamin D3[1,25(OH)2D3] increases the expression and antibacterial activity of LL-37. To examine the activity of vitamin D on the innate immune defense of the gingival epithelium, cultured epithelial cells were treated with either 10−8M 1,25(OH)2D3or ethanol for up to 24 h. A time-dependent induction of LL-37 mRNA up to 13-fold at 24 h in both standard monolayer and three-dimensional cultures was observed. Induction of the vitamin D receptor and the 1-α-hydroxylase genes was also observed. The hydroxylase was functional, as LL-37 induction was observed in response to stimulation by 25(OH)D3. Through microarray analysis of other innate immune genes, CD14 expression increased 4-fold, and triggering receptor expressed on myeloid cells-1 (TREM-1) was upregulated 16-fold after 24 h of treatment with 1,25(OH)2D3. TREM-1 is a pivotal amplifier of the innate immune response in macrophages, leading to increased production by inflammatory response genes. Activation of TREM-1 on the GEC led to an increase in interleukin-8 (IL-8) mRNA levels. Incubation of three-dimensional cultures with 1,25(OH)2D3led to an increase in antibacterial activity against the periodontal pathogenAggregatibacter actinomycetemcomitanswhen the bacteria were added to the apical surface. This study is the first to demonstrate the effect of vitamin D on antibacterial defense of oral epithelial cells, suggesting that vitamin D3could be utilized to enhance the innate immune defense in the oral cavity.


2004 ◽  
Vol 50 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Robert A. Dorschner ◽  
Belen Lopez-Garcia ◽  
Jennifer Massie ◽  
Choll Kim ◽  
Richard L. Gallo

2020 ◽  
Vol 104 ◽  
pp. 506-516
Author(s):  
Jingguang Wei ◽  
Chen Li ◽  
Jisheng Ou ◽  
Xin Zhang ◽  
Zetian Liu ◽  
...  

2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Shakir Hasan ◽  
Nikhil Nitin Kulkarni ◽  
Arni Asbjarnarson ◽  
Irena Linhartova ◽  
Radim Osicka ◽  
...  

ABSTRACTThe airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent,Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact ofB. pertussisinfection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI).B. pertussisadhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions ofBordetella-infected airway epithelia.


2017 ◽  
Vol 70 ◽  
pp. 13-24 ◽  
Author(s):  
Liang Lu ◽  
Xu Wang ◽  
Sizhong Wu ◽  
Xuejiao Song ◽  
Ziqi Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document