Collision Tectonics between the Tarim Block (Basin) and the Northwestern Tibet Plateau: New Observations from a Multidisciplinary Geoscientific Investigation in the Western Kunlun Mountains

2010 ◽  
Vol 75 (2) ◽  
pp. 126-132 ◽  
Author(s):  
XIAO Xuchang ◽  
LIU Xun ◽  
GAO Rui ◽  
Houn KAO ◽  
LUO Zhaohua
2020 ◽  
Vol 115 (7) ◽  
pp. 1559-1588
Author(s):  
Bang-Lu Zhang ◽  
Chang-Le Wang ◽  
Leslie J. Robbins ◽  
Lian-Chang Zhang ◽  
Kurt O. Konhauser ◽  
...  

Abstract The Upper Carboniferous Ortokarnash manganese ore deposit in the West Kunlun orogenic belt of the Xinjiang province in China is hosted in the Kalaatehe Formation. The latter is composed of three members: (1) the 1st Member is a volcanic breccia limestone, (2) the 2nd Member is a sandy limestone, and (3) the 3rd Member is a dark gray to black marlstone containing the manganese carbonate mineralization, which, in turn, is overlain by sandy and micritic limestone. This sequence represents a single transgression-regression cycle, with the manganese deposition occurring during the highstand systems tract. Geochemical features of the rare earth elements (REE+Y) in the Kalaatehe Formation suggest that both the manganese ore and associated rocks were generally deposited under an oxic water column with Post-Archean Australian Shale (PAAS)-normalized REE+Y patterns displaying characteristics of modern seawater (e.g., light REE depletion and negative Ce anomalies). The manganese ore is dominated by fine-grained rhodochrosite (MnCO3), dispersed in Mn-rich silicates (e.g., friedelite and chlorite), and trace quantities of alabandite (MnS) and pyrolusite (MnO2). The replacement of pyrolusite by rhodochrosite suggests that the initial manganese precipitates were Mn(IV)-oxides. Precipitation within an oxic water column is supported by shale-normalized REE+Y patterns from the carbonate ores that are characterized by large positive Ce (>3.0) anomalies, negative Y (~0.7) anomalies, low Y/Ho ratios (~20), and a lack of fractionation between the light and heavy rare earth elements ((Nd/Yb)PAAS ~0.9). The manganese carbonate ores are also 13C-depleted, further suggesting that the Mn(II) carbonates formed as a result of Mn(III/IV)-oxide reduction during burial diagenesis.


2018 ◽  
Vol 12 (7) ◽  
pp. 2341-2348 ◽  
Author(s):  
Shugui Hou ◽  
Theo M. Jenk ◽  
Wangbin Zhang ◽  
Chaomin Wang ◽  
Shuangye Wu ◽  
...  

Abstract. An accurate chronology is the essential first step for a sound understanding of ice core records. However, dating ice cores drilled from the high-elevation glaciers is challenging and often problematic, leading to great uncertainties. The Guliya ice core, drilled to the bedrock (308.6 m in length) along the western Kunlun Mountains on the north-western Tibetan Plateau (TP) and widely used as a benchmark for palaeoclimate research, is believed to reach >500 ka (thousand years) at its bottom. Meanwhile other Tibetan ice cores (i.e. Dasuopu and East Rongbuk in the Himalayas, Puruogangri in the central TP and Dunde in the north-eastern TP) are mostly of Holocene origin. In this study, we drilled four ice cores into bedrock (216.6, 208.6, 135.8 and 133.8 m in length, respectively) from the Chongce ice cap ∼30 km to the Guliya ice core drilling site. We took measurements of 14C, 210Pb, tritium and β activity for the ice cores, and used these values in a two-parameter flow model to establish the ice core depth–age relationship. We suggested that the Chongce ice cores might be of Holocene origin, consistent with the other Tibetan ice cores except Guliya. The remarkable discrepancy between the Guliya and all the other Tibetan ice core chronology implies that more effort is necessary to explore multiple dating techniques to confirm the age ranges of the TP glaciers, including those from Chongce and Guliya.


Sign in / Sign up

Export Citation Format

Share Document