Warm and freeze-fracture of cotton seed radicles

Author(s):  
E. L. Vigil ◽  
E. F. Erbe

In cotton seeds the radicle has 12% moisture content which makes it possible to prepare freeze-fracture replicas without fixation or cryoprotection. For this study we have examined replicas of unfixed radicle tissue fractured at room temperature to obtain data on organelle and membrane structure.Excised radicles from seeds of cotton (Gossyplum hirsutum L. M-8) were fractured at room temperature along the longitudinal axis. The fracture was initiated by spliting the basal end of the excised radicle with a razor. This procedure produced a fracture through the tissue along an unknown fracture plane. The warm fractured radicle halves were placed on a thin film of 100% glycerol on a flat brass cap with fracture surface up. The cap was rapidly plunged into liquid nitrogen and transferred to a freeze- etch unit. The sample was etched for 3 min at -95°C to remove any condensed water vapor and then cooled to -150°C for platinum/carbon evaporation.

Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
V. R. Matricardi ◽  
G. G. Hausner ◽  
D. F. Parsons

In order to observe room temperature hydrated specimens in an electron microscope, the following conditions should be satisfied: The specimen should be surrounded by water vapor as close as possible to the equilibrium vapor pressure corresponding to the temperature of the specimen.The specimen grid should be inserted, focused and photo graphed in the shortest possible time in order to minimize dehydration.The full area of the specimen grid should be visible in order to minimize the number of changes of specimen required.There should be no pressure gradient across the grid so that specimens can be straddled across holes.Leakage of water vapor to the column should be minimized.


Optik ◽  
2021 ◽  
Vol 234 ◽  
pp. 166615
Author(s):  
S.R. Cynthia ◽  
R. Sivakumar ◽  
C. Sanjeeviraja

Author(s):  
Kumar Haunsbhavi ◽  
Karuppiah Deva Arun Kumar ◽  
Paolo Mele ◽  
Omar M. Aldossary ◽  
Mohd Ubaidullah ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 3445-3453
Author(s):  
Wei Huang ◽  
Xinge Yu ◽  
Li Zeng ◽  
Binghao Wang ◽  
Atsuro Takai ◽  
...  

1981 ◽  
Author(s):  
A Sturk ◽  
L M Burt ◽  
T Hakvoort ◽  
J W ten cate ◽  
N Crawford

Platelet concentrates were stored for one, two or three days at 4°C (unagitated) or room temperature (unagitated and linearly agitated). The morphology of platelets in platelet concentrates, directly after twice washing at room temperature and after 60 min incubation of the washed platelets at 37°C was investigated by both scanning and transmission electron microscopy.Platelets in the freshly prepared concentrates are slightly activated, i.e. show some pseudopod formation. At 4°C platelets rapidly loose their discoid shape. After three days their surface membrane shows extensive folding, they are slightly vacuolated and have lost most of their granules. Incubation of these cold-stored platelets at 37°C does not induce reversal to the discoid shape.Room temperature storage results in reversal of the slight initial platelet activation. After three days unagitated platelets are slightly more vacuolated than platelets stored with agitation. Room temperature storage usually results in remarkably well preserved, discoid platelets. Occasionally however, agitated platelet concentrates contain a high proportion of odd shaped cells. As platelets stored at 4°C did not became discoid after incubation at 37°, the altered membrane structure could provide an explanation for their short survival upon transfusion. Our results also provide a morphological correlation with the slightly better recovery and survival of platelets stored agitated vs.- non-agitated platelets at room temperature.


RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17910-17913
Author(s):  
Liuhui Lei ◽  
Yuanyuan Tan ◽  
Xing Yuan ◽  
Wei Dou ◽  
Jiale Zhang ◽  
...  

Flexible electric-double-layer (EDL) thin film transistors (TFTs) based on a vertical InGaZnO4 (IGZO) channel are fabricated at room temperature.


2021 ◽  
pp. 149619
Author(s):  
Manni Chen ◽  
Zhipeng Zhang ◽  
Runze Zhan ◽  
Juncong She ◽  
Shaozhi Deng ◽  
...  

2015 ◽  
Vol 1731 ◽  
Author(s):  
Nobuko Fukuda ◽  
Shintaro Ogura ◽  
Koji Abe ◽  
Hirobumi Ushijima

ABSTRACTWe have achieved a drastic improvement of the performance as thin film transistor (TFT) for solution-processed IGZO thin film by controlling drying temperature of solvents containing the precursor solution. The IGZO-precursor solution was prepared by mixing of metal nitrates and two kinds of organic solvents, 2-methoxyethanol (2ME) and 2,2,2-trifluoroethanol (TFE). 2ME was used for dissolving metal nitrates. TFE was added as a solvent for reducing surface tension as small as possible, leading to improvement of the wettability of the precursor solution on the surface of the substrate. In order to discuss the relationship between morphology and drying process, the spin-coated IGZO-precursor films were dried at room temperature and 140 °C on a hotplate, respectively. Annealing of the both films was carried out at 300 °C in an electric oven for 60 min after each drying process. Drying at room temperature provides a discontinuous film, resulting in a large variation of the TFT performance. On the other hand, drying at 140 °C provides a continuous film, resulting in the higher TFT performance and a minor variation. The difference in surface morphologies would be derived from the evaporation rate of the organic solvents. The rapid evaporation at 140 °C brings about rapid pinning of the spin-coated precursor layer on the substrate. Preparation process via the drying at 140 °C gave ∼ 1 cm2 V-1 s-1 of the saturated mobility, quite small hysteresis, and 107∼ 108 of the on-off ratio.


2016 ◽  
Vol 45 (43) ◽  
pp. 17312-17318 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Dasom Park ◽  
Nabeen K. Shrestha ◽  
Jinho Chang ◽  
Cheol-Woo Yi ◽  
...  

An aqueous solution based synthetic method for binder-free Ag2Te thin films using ion exchange induced chemical transformation of Ag/AgxO thin films.


Sign in / Sign up

Export Citation Format

Share Document