The in vivo and in vitro effect of diphenylhydantoin and phenobarbitone on K+-activated phosphohydrolase and (Na+, K+)-activated ATPase in particulate membrane fractions from rat brain

1970 ◽  
Vol 22 (2) ◽  
pp. 81-85 ◽  
Author(s):  
BENT FORMBY
Keyword(s):  
2017 ◽  
Vol 68 (8) ◽  
pp. 1711-1715
Author(s):  
Stefania Gheorghe ◽  
Gabriela Geanina Vasile ◽  
Cristina Gligor ◽  
Irina Eugenia Lucaciu ◽  
Mihai Nita Lazar

Metallic elements copper (Cu), zinc (Zn), nickel (Ni) and manganese (Mn) are some of the most commonly found in water and sediment samples collected from the Danube - Danube Delta. These elements are important as essential micronutrients, being normally present at low concentrations in biological organisms, but in high concentrations they become toxic with immediate and delayed effects. The role of this metals is still controversial, that�s why bioconcentration potential is so important. In this non-clinical study, we tested in vitro effect of heavy metals on carp, Cyprinus carpio, reproducing in vivo presence of Cu, Zn, Ni and Mn in the Romanian�s surface water. The toxicity tests were performed according to OECD 203 by detecting the average (50%) lethal concentration - LC50 on aquatic organisms (freshwater fish) at 96h. The results pointed out that, copper value for LC 50 at 96h was estimated as 3.4 mg/L (concentrations tested in the range of 0.1 - 4.75 mg/L). Zinc value for LC 50 at 96h was estimated as 20.8 mg/L (concentrations tested in the range of 0.028 � 29.6 mg/L). Nickel value for LC 50 at 96h was estimated as 40.1 mg/L (concentrations tested in the range of 0.008 - 84.5 mg/L). For manganese the mortality effects has recorded at LC 50 at 96h at estimated value higher than 53 mg/L (concentrations tested in the range of 0.04 - 53.9 mg/L). The accuracy of the testing metals concentration was insured by the screening of the dilution water, as well as food and control fish, acclimated in laboratory conditions.


2002 ◽  
Vol 364 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Gareth J.O. EVANS ◽  
Alan MORGAN

The secretory vesicle cysteine string proteins (CSPs) are members of the DnaJ family of chaperones, and function at late stages of Ca2+-regulated exocytosis by an unknown mechanism. To determine novel binding partners of CSPs, we employed a pull-down strategy from purified rat brain membrane or cytosolic proteins using recombinant hexahistidine-tagged (His6-)CSP. Western blotting of the CSP-binding proteins identified synaptotagmin I to be a putative binding partner. Furthermore, pull-down assays using cAMP-dependent protein kinase (PKA)-phosphorylated CSP recovered significantly less synaptotagmin. Complexes containing CSP and synaptotagmin were immunoprecipitated from rat brain membranes, further suggesting that these proteins interact in vivo. Binding assays in vitro using recombinant proteins confirmed a direct interaction between the two proteins and demonstrated that the PKA-phosphorylated form of CSP binds synaptotagmin with approximately an order of magnitude lower affinity than the non-phosphorylated form. Genetic studies have implicated each of these proteins in the Ca2+-dependency of exocytosis and, since CSP does not bind Ca2+, this novel interaction might explain the Ca2+-dependent actions of CSP.


1981 ◽  
Vol 7 (3) ◽  
pp. 237-242 ◽  
Author(s):  
Kristin H. Milby ◽  
Ivan N. Mefford ◽  
Willie Chey ◽  
Ralph N. Adams
Keyword(s):  

2005 ◽  
Vol 1722 (2) ◽  
pp. 156-167 ◽  
Author(s):  
V TAMHANE ◽  
N CHOUGULE ◽  
A GIRI ◽  
A DIXIT ◽  
M SAINANI ◽  
...  

1990 ◽  
Vol 183 (5) ◽  
pp. 1623
Author(s):  
J.A.D.M. Tonnaer ◽  
P. Room ◽  
W.M.J.B. Van Gemert ◽  
L.P.C. Delbressine ◽  
T. de Boer ◽  
...  

Development ◽  
1970 ◽  
Vol 24 (2) ◽  
pp. 381-392
Author(s):  
Peddrick Weis

The effect of the nerve growth factor (NGF) on chick embryo spinal ganglia was studied in the hanging-drop bioassay system by comparison with parallel development in vivo. The well-differentiated ventrolateral neuroblasts, which in vivo increase 1·33 times in size during the culture period, did not increase in size at all in vitro. Only 65–72% survived to the end of the culture period regardless of the NGF concentration. The less-differentiated mediodorsal (M-D) neuroblasts, which in vivo increase 1·31 times in size during the culture period, were found to increase equally in vitro if sufficient NGF was present. Such a quantity was greater than that which evoked maximum outgrowth of neurites. Survival of M-D neuroblasts was also related to NGF concentration but did not equal the in vivo condition even at the highest concentration. The hyperchromatic type of degeneration prevented by high NGF concentrations is that which results in vivo from insufficient peripheral field. From this and other reports it would appear that the response to NGF seen in vitro is due only to the M-D neuroblasts, and that all biochemical and cytological observations which have been reported would therefore represent conditions within those cells only.


Sign in / Sign up

Export Citation Format

Share Document