Interspecific Differences in Tolerance to Soil Compaction, Drought and Waterlogging Stresses among Maize and Triticale Genotypes

2014 ◽  
Vol 201 (5) ◽  
pp. 330-343 ◽  
Author(s):  
M. T. Grzesiak ◽  
P. Szczyrek ◽  
G. Rut ◽  
A. Ostrowska ◽  
K. Hura ◽  
...  
2014 ◽  
Vol 36 (12) ◽  
pp. 3249-3261 ◽  
Author(s):  
Maciej T. Grzesiak ◽  
Agnieszka Ostrowska ◽  
Katarzyna Hura ◽  
Grzegorz Rut ◽  
Franciszek Janowiak ◽  
...  

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


Author(s):  
Salavat Mudarisov ◽  
Ildar Farkhutdinov ◽  
Airat Mukhametdinov ◽  
Raushan Aminov ◽  
Rustam Bagautdinov ◽  
...  

1996 ◽  
Author(s):  
Michael P. Amaranthus ◽  
Debbie Page-Dumroese ◽  
Al Harvey ◽  
Efren Cazares ◽  
Larry F. Bednar

2019 ◽  
Vol 45 (5) ◽  
pp. 755
Author(s):  
Wen-Qing SHI ◽  
Bin-Bin ZHANG ◽  
Hong-Juan LIU ◽  
Qing-Xin ZHAO ◽  
Chun-Yu SHI ◽  
...  

1994 ◽  
Vol 23 (1) ◽  
pp. 27-34
Author(s):  
C. Plouffe ◽  
S. Tessier ◽  
D. A. Angers ◽  
L. Chi

1950 ◽  
Vol 14 (C) ◽  
pp. 388-391 ◽  
Author(s):  
J. R. Watson ◽  
C. D. Jeffries

1958 ◽  
Vol 22 (2) ◽  
pp. 181-184 ◽  
Author(s):  
W. J. Flocker ◽  
J. A. Vomocil ◽  
M. T. Vittum

2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


Sign in / Sign up

Export Citation Format

Share Document