Bioprospecting thermotolerant yeasts from distillery effluent and molasses for high‐temperature ethanol production

Author(s):  
Rameshwar Avchar ◽  
Vikram Lanjekar ◽  
Abhishek Baghela
2016 ◽  
Vol 03 ◽  
pp. 32 ◽  
Author(s):  
Phong, H.X. ◽  
Nitiyon, S. ◽  
Giang, N.T.C. ◽  
Yamada, M. ◽  
Thanonkeo, P. ◽  
...  

Author(s):  
Rameshwar Avchar ◽  
Vikram Lanjekar ◽  
Prashant K. Dhakephalkar ◽  
Sumit Singh Dagar ◽  
Abhishek Baghela

Fermentation ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 124
Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Chieh-Chen Huang

Bioethanol is considered an excellent alternative to fossil fuels, since it importantly contributes to the reduced consumption of crude oil, and to the alleviation of environmental pollution. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over others, e.g., it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars); tolerate high temperature, toxins, and a wide range of pH values; and produce volatile short-chain ester. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species. These attributes make K. marxianus promising as an industrial host for the biosynthesis of biofuels and other valuable chemicals.


Biofuels ◽  
2010 ◽  
Vol 1 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Sachin Kumar ◽  
Surendra P Singh ◽  
Indra M Mishra ◽  
Dilip K Adhikari

2018 ◽  
Vol 49 (2) ◽  
pp. 378-391 ◽  
Author(s):  
Nuttaporn Chamnipa ◽  
Sudarat Thanonkeo ◽  
Preekamol Klanrit ◽  
Pornthap Thanonkeo

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Vipul Gohel ◽  
Gang Duan

No-cook process using granular starch hydrolyzing enzyme (GSHE) was evaluated for Indian broken rice and pearl millet. One-factor-at-a-time optimization method was used in ethanol production to identify optimum concentration of GSHE, under yeast fermentation conditions using broken rice and pearl millet as fermentation feedstocks. An acid fungal protease at a concentration of 0.2 kg per metric ton of grain was used along with various dosages of GSHE under yeast fermentation conditions to degrade the grain proteins into free amino nitrogen for yeast growth. To measure the efficacy of GSHE to hydrolyze no-cook broken rice and pearl millet, the chemical composition, fermentation efficiency, and ethanol recovery were determined. In both feedstocks, fermentation efficiency and ethanol recovery obtained through single-step no-cook process were higher than conventional multistep high-temperature process, currently considered the ideal industrial process. Furthermore, the no-cook process can directly impact energy consumption through steam saving and reducing the water cooling capacity needs, compared to conventional high-temperature process.


2020 ◽  
Author(s):  
Cleiton Dias do Prado ◽  
Gustavo Patricio Lorca Mandrujano ◽  
Jonas Paulino de Souza ◽  
Flavia Beatriz Sgobbi ◽  
Hosana Ribeiro Novaes ◽  
...  

Abstract Background The use of thermotolerant yeast strains can improve the efficiency of ethanol fermentation, allowing fermentation to occur at temperatures higher than 40 °C. This increment in temperature could benefit traditional bio-ethanol production and allow simultaneous saccharification and fermentation (SSF) of starch or lignocellulosic biomass. Results We identified and characterized the physiology of a new thermotolerant strain able to fermentate at 40 °C while producing high yields of ethanol. Our results showed that, in comparison to the industrial yeast CAT-1, our strain was more resistant to various stressors generated during the production of first- and second-generation ethanol, and it also was able to change the pattern of genes involved in sucrose assimilation (SUC2 and AGT1). The formation of secondary products of fermentation was different at 40ºC, with reduced expression of genes involved in the formation of glycerol (GPD2), acetate (ALD6 and ALD4), and acetyl-CoA (ACS2). Conclusion The LBGA-01 strain is a thermotolerant strain that modulates the production of key genes, changing metabolic pathways during high-temperature fermentation, and increasing its tolerance to the high concentration of ethanol, sugar, acetic lactic, acetic acid, furfural and HMF. This indicates that this strain can be used to improve first- and second-generation ethanol production in Brazil.


Sign in / Sign up

Export Citation Format

Share Document