Using a dual‐task paradigm to investigate motor and cognitive performance in children with intellectual disability

2019 ◽  
Vol 33 (2) ◽  
pp. 172-179
Author(s):  
Hiba Kachouri ◽  
Rabeb Laatar ◽  
Rihab Borji ◽  
Haithem Rebai ◽  
Sonia Sahli
Author(s):  
Samantha L. Epling ◽  
Graham K. Edgar ◽  
Paul N. Russell ◽  
William S. Helton

Dual-tasking situations are common in military, firefighting, search and rescue, and other high risk operations. Cognitive and physical demands can occur at the same time, but little is known about the specific demands of real world tasks or how they might interfere with one another. It is well known that attempting simultaneous tasks will divide and divert attention, but to what extent? In this experiment, a narrative memory task was paired with an outdoor running task, and as expected, memory task performance declined when participants were asked to run at the same time. It is suggested that more cognitively demanding physical tasks be used within this dual-task paradigm for a better understanding of the human cognitive resource structure, i.e., how and why certain tasks interfere.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 471
Author(s):  
Maria Talarico ◽  
Christopher Ballance ◽  
Laura Boucher ◽  
James Onate

2019 ◽  
Vol 123 (6) ◽  
pp. 2372-2393
Author(s):  
Sarah J. E. Wong-Goodrich ◽  
Holly J. DeRosa ◽  
Daniel W. Kee

Cognitive performance and cerebral hemispheric function are known to vary with fluctuating levels of estradiol and progesterone across the menstrual cycle in naturally cycling females. However, the literature is mixed with regard to how each hemisphere may be affected by elevated ovarian hormones. To better understand this, the current study employed a dual-task paradigm to examine potential shifts in hemispheric involvement for a verbal problem-solving task across the menstrual cycle in 30 right-handed, normally cycling young adult females (18–21 years old). To our knowledge, no study to date has utilized dual-task procedures to directly investigate the potential shifts in hemispheric function across the menstrual cycle. Specifically, participants were tested during both menses and their estimated midluteal phase where they engaged in repetitive unilateral finger-tapping while concurrently solving anagrams silently or aloud. Analysis of finger-tapping interference during the dual-task conditions revealed that solving anagrams silently was lateralized to the left hemisphere while solving anagrams aloud yielded a pattern of more bilateral hemispheric involvement, both of which were consistent across both menses and midluteal phases. Analysis of cognitive performance, however, revealed that silent anagrams performance while tapping with the right, but not left, hand significantly increased during the midluteal phase. Consistent with a number of other studies using different methodological approaches, the current dual-task findings suggest that when ovarian hormone levels are putatively elevated, there is enhanced recruitment of left hemisphere resources while performing a lateralized verbal task.


2019 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Pradeep Kumar ◽  
◽  
Rishi Panday ◽  
Aishwarya . ◽  
◽  
...  

2019 ◽  
Author(s):  
Stefan Huijser ◽  
Niels Anne Taatgen ◽  
Marieke K. van Vugt

Preparing for the future during ongoing activities is an essential skill. Yet, it is currently unclear to what extent we can prepare for the future in parallel with another task. In two experiments, we investigated how characteristics of a present task influenced whether and when participants prepared for the future, as well as its usefulness. We focused on the influence of concurrent working memory load, assuming that working memory would interfere most strongly with preparation. In both experiments, participants performed a novel sequential dual-task paradigm, in which they could voluntary prepare for a second task while performing a first task. We identified task preparation by means of eye tracking, through detecting when participants switched their gaze from the first to the second task. The results showed that participants prepared productively, as evidenced by faster RTs on the second task, with only a small cost to the present task. The probability of preparation and its productiveness decreased with general increases in present task difficulty. In contrast to our prediction, we found some but no consistent support for influence of concurrent working memory load on preparation. Only for concurrent high working memory load (i.e., two items in memory), we observed strong interference with preparation. We conclude that preparation is affected by present task difficulty, potentially due to decreased opportunities for preparation and changes in multitasking strategy. Furthermore, the interference from holding two items may reflect that concurrent preparation is compromised when working memory integration is required by both processes.


Sign in / Sign up

Export Citation Format

Share Document