Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems

2016 ◽  
Vol 43 (10) ◽  
pp. 2027-2039 ◽  
Author(s):  
Yong-Liang Chen ◽  
Jin-Zhi Ding ◽  
Yun-Feng Peng ◽  
Fei Li ◽  
Gui-Biao Yang ◽  
...  
2019 ◽  
Vol 476 (19) ◽  
pp. 2705-2724 ◽  
Author(s):  
Kyle Hartman ◽  
Susannah G. Tringe

Abstract Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes — collectively termed the root microbiome — are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.


Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Chapter 14 “Terrestrial ecosystems” focuses on the use of eDNA analysis for the study of terrestrial organisms, especially those found in or associated with soil. While eDNA-based analyses have rapidly gained momentum in the freshwater ecology community, first for single-species detection and more recently for diversity surveys, their success has been less immediate among terrestrial ecologists. Soil microbiologists are a notable exception, as they quickly realized that targeting DNA directly in the environment could free them from cultivating microorganisms prior to any community census. This chapter first addresses the particularities of detectability, persistence, and mobility of eDNA in soil. Then, it revisits several remarkable studies dealing with the characterization of plant, earthworm, or soil microbial communities, as well as soil functional diversity. Finally, Chapter 14 reviews one of the most fascinating opportunities offered by eDNA metabarcoding (i.e., the possibility to carry out multitaxa diversity surveys).


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Youzhi Feng ◽  
Meng Wu ◽  
Ruirui Chen ◽  
Zhongpei Li ◽  
...  

ABSTRACT Microbial communities, coupled with substrate quality and availability, regulate the stock (formation versus mineralization) of soil organic matter (SOM) in terrestrial ecosystems. However, our understanding of how soil microbes interact with contrasting substrates influencing SOM quantity and quality is still very superficial. Here, we used thermodynamic theory principles and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to evaluate the linkages between dissolved organic matter (DOM [organic substrates in soil that are readily available]), thermodynamic quality, and microbial communities. We investigated soils from subtropical paddy ecosystems across a 1,000-km gradient and comprising contrasting levels of SOM content and nutrient availability. Our region-scale study suggested that soils with a larger abundance of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and higher SOM content. We further advocated a novel phylotype-level microbial classification based on their associations with OM quantities and qualities and identified two contrasting clusters of bacterial taxa: phylotypes that are highly positively correlated with thermodynamically favorable DOM and larger SOM content versus those which are associated with less-favorable DOM and lower SOM content. Both groups are expected to play critical roles in regulating SOM contents in the soil. By identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities and should be considered in models of soil organic matter preservation. IMPORTANCE Microbial communities are known to be important drivers of organic matter (OM) accumulation in terrestrial ecosystems. However, despite the importance of these soil microbes and processes, the mechanisms behind these microbial-SOM associations remain poorly understood. Here, we used the principles of thermodynamic theory and novel Fourier transform ion cyclotron resonance mass spectrometry techniques to investigate the links between microbial communities and dissolved OM (DOM) thermodynamic quality in soils across a 1,000-km gradient and comprising contrasting nutrient and C contents. Our region-scale study provided evidence that soils with a larger amount of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and larger SOM content. Moreover, we created a novel phylotype-level microbial classification based on the associations between microbial taxa and DOM quantities and qualities. We found two contrasting clusters of bacterial taxa based on their level of association with thermodynamically favorable DOM and SOM content. Our study advances our knowledge on the important links between microbial communities and SOM. Moreover, by identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities. Together, our findings support that the association between microbial species taxa and substrate thermodynamic quality constituted an important complement explanation for soil organic matter preservation.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


2021 ◽  
Vol 773 ◽  
pp. 145640
Author(s):  
Lili Rong ◽  
Longfei Zhao ◽  
Leicheng Zhao ◽  
Zhipeng Cheng ◽  
Yiming Yao ◽  
...  

Ecosystems ◽  
2021 ◽  
Author(s):  
Susana Rodríguez-Echeverría ◽  
Manuel Delgado-Baquerizo ◽  
José A. Morillo ◽  
Aurora Gaxiola ◽  
Marlene Manzano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document