Roles of working memory performance and instructional strategy in complex cognitive task performance

2016 ◽  
Vol 32 (6) ◽  
pp. 594-606 ◽  
Author(s):  
V. Cevik ◽  
A. Altun
2020 ◽  
pp. 174702182098030
Author(s):  
Otto Waris ◽  
Daniel Fellman ◽  
Jussi Jylkkä ◽  
Matti Laine

Cognitive task performance is a dynamic process that evolves over time, starting from the first encounters with a task. An important aspect of these task dynamics is the employment of strategies to support successful performance and task acquisition. Focusing on episodic memory performance, we: (1) tested two hypotheses on the effects of novelty and task difficulty on strategy use; (2) replicated our previous results regarding strategy use in a novel memory task; and (3) evaluated whether repeated open-ended strategy queries affect task performance and/or strategy use. The present pre-registered online study comprised 161 adult participants who were recruited through the Prolific crowdsourcing platform. We employed two separate 5-block list learning tasks, one with 10 pseudowords and the other with 18 common nouns, and collected recall performance and strategy reports for each block. Using Bayesian linear mixed effects models, the present findings (1) provide some support for the hypothesis that task-initial strategy development is not triggered only by task novelty, but can appear also in a familiar, moderately demanding task; (2) replicate earlier findings from an adaptive working memory task indicating strategy use from the beginning of a task, associations between strategy use and objective task performance, and only modest agreement between open-ended vs. list-based strategy reports; and (3) indicate that repeated open-ended strategy reports do not affect objective recall. We conclude that strategy use is an important aspect of memory performance right from the start of a task, and it undergoes development at the initial stages depending on task characteristics. In a larger perspective, the present results concur with the views of skill learning and adaptivity in cognitive task performance.


2013 ◽  
Author(s):  
Laura K. Varner ◽  
Scott A. Crossley ◽  
Erica L. Snow ◽  
Danielle S. McNamara

2019 ◽  
Author(s):  
Debbie Marianne Yee ◽  
Sarah L Adams ◽  
Asad Beck ◽  
Todd Samuel Braver

Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the brain integrates the motivational value of diverse incentives (e.g., motivational integration) into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N=44) and younger (N=54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. Together these data suggest that older adults may have impairments in incentive integration, and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.


2021 ◽  
Vol 111 ◽  
pp. 103882
Author(s):  
Rosleen Mansour ◽  
Anthony R. Ward ◽  
David M. Lane ◽  
Katherine A. Loveland ◽  
Michael G. Aman ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 935
Author(s):  
Ying Xing Feng ◽  
Masashi Kiguchi ◽  
Wei Chun Ung ◽  
Sarat Chandra Dass ◽  
Ahmad Fadzil Mohd Hani ◽  
...  

The effect of stress on task performance is complex, too much or too little stress negatively affects performance and there exists an optimal level of stress to drive optimal performance. Task difficulty and external affective factors are distinct stressors that impact cognitive performance. Neuroimaging studies showed that mood affects working memory performance and the correlates are changes in haemodynamic activity in the prefrontal cortex (PFC). We investigate the interactive effects of affective states and working memory load (WML) on working memory task performance and haemodynamic activity using functional near-infrared spectroscopy (fNIRS) neuroimaging on the PFC of healthy participants. We seek to understand if haemodynamic responses could tell apart workload-related stress from situational stress arising from external affective distraction. We found that the haemodynamic changes towards affective stressor- and workload-related stress were more dominant in the medial and lateral PFC, respectively. Our study reveals distinct affective state-dependent modulations of haemodynamic activity with increasing WML in n-back tasks, which correlate with decreasing performance. The influence of a negative effect on performance is greater at higher WML, and haemodynamic activity showed evident changes in temporal, and both spatial and strength of activation differently with WML.


2009 ◽  
Vol 43 (8) ◽  
pp. 766-774 ◽  
Author(s):  
Luca Cocchi ◽  
Francesca Bosisio ◽  
Olivia Carter ◽  
Stephen J. Wood ◽  
André Berchtold ◽  
...  

Objective: Patients with schizophrenia show deficits in visuospatial working memory and visual pursuit processes. It is currently unclear, however, whether both impairments are related to a common neuropathological origin. The purpose of the present study was therefore to examine the possible relations between the encoding and the discrimination of dynamic visuospatial stimuli in schizophrenia. Method: Sixteen outpatients with schizophrenia and 16 control subjects were asked to encode complex disc displacements presented on a screen. After a delay, participants had to identify the previously presented disc trajectory from a choice of six static linear paths, among which were five incorrect paths. The precision of visual pursuit eye movements during the initial presentation of the dynamic stimulus was assessed. The fixations and scanning time in definite regions of the six paths presented during the discrimination phase were investigated. Results: In comparison with controls, patients showed poorer task performance, reduced pursuit accuracy during incorrect trials and less time scanning the correct stimulus or the incorrect paths approximating its global structure. Patients also spent less time scanning the leftmost portion of the correct path even when making a correct choice. The accuracy of visual pursuit and head movements, however, was not correlated with task performance. Conclusions: The present study provides direct support for the hypothesis that active integration of visuospatial information within working memory is deficient in schizophrenia. In contrast, a general impairment of oculomotor mechanisms involved in smooth pursuit did not appear to be directly related to lower visuospatial working memory performance in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document