scholarly journals PR547: Additive effects of osteoporotic medications on osseointegration of titanium implants: A systematic review and metal-analysis

2018 ◽  
Vol 45 ◽  
pp. 306-306
2021 ◽  
Vol 22 (7) ◽  
pp. 3800
Author(s):  
Ingmar A. J. van Hengel ◽  
Melissa W. A. M. Tierolf ◽  
Lidy E. Fratila-Apachitei ◽  
Iulian Apachitei ◽  
Amir A. Zadpoor

Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.


2020 ◽  
Vol 7 ◽  
pp. 31
Author(s):  
Nthabiseng Nhlapo ◽  
Thywill Cephas Dzogbewu ◽  
Olga de Smidt

An ideal biomaterial should be biointegratable with minimum adverse immune response. Titanium (Ti) and its alloys are widely used biomaterials for manufacturing clinical implants because of their innate biocompatibility. However, the bioinert property of Ti may hinder tissue–implant integration and its bio compatibility nature allows for attachment of bacterial cells on implant surfaces. Nanoparticles (NPs) have been proposed as a possible intervention to overcome these biological shortcomings of Ti-based implants. The aim of the current systematic review was to identify literature that demonstrates enhanced biocompatibility of Ti-based implants by incorporating NPs. Electronic searches were conducted through the PubMed/MEDLINE, ScienceDirect, Web of Science and EBSCOhost databases. Studies published in English were extracted, without restrictions on the year of publication, using the following keywords: ‘biocompatibility’, ‘nanoparticles’, ‘titanium’ and ‘implant’. The guidelines stipulated in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement were followed. A total of 630 articles were identified in the initial search and upon reviewing, 21 articles were selected according to the eligibility criteria. The selected literature showed robust evidence to support the hypothesis that the inclusion of NPs improves biocompatibility of Ti implants. The studies further indicated a close correlation between biocompatibility and antibacterial properties, of which NPs have been proven to characteristically achieve both.


2020 ◽  
Vol 5 (4) ◽  
pp. 212-222 ◽  
Author(s):  
Olga D. Savvidou ◽  
Angelos Kaspiris ◽  
Ioannis Trikoupis ◽  
George Kakouratos ◽  
Stavros Goumenos ◽  
...  

Abstract. Introduction: Implant-associated infections are a major problem in orthopaedic surgery. Local delivery systems of antimicrobial agents on the implant surface have attracted great interest recently. The purpose of this study was to identify antimicrobial coatings currently used in clinical practice, examining their safety and effectiveness in reducing post-operative infection rates.Materials and Methods: A systematic review was conducted in four databases (Medline, Embase, Cochrane, Cinahl) according to the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines up to December 2019, using the key words “orthopaedic implant coated”, “coated implant infection”, “silver coating ” and “antibiotic coating”.Results: Seven articles involving 1307 patients (561 with coated implants and 746 controls who were not) comparing the incidence of periprosthetic infections after the application of internal fracture fixation, total arthroplasties and endoprostheses were evaluated. Three different coating technologies were identified: gentamicin coating for tibia nail and total arthroplasties; silver technology and povidone-iodine coating for tumour endoprostheses and titanium implants. Meta-analysis demonstrated that patients who were treated with antimicrobial coated implants presented lower infection rates compared to controls over the seven studies (Q = 6.1232, I2 = 0.00, 95% CI: 1.717 to 4.986, OR: 2.926, Z= 3.949, p<0.001). Subgroup statistical analysis revealed that each coating technique was effective in the prevention of periprosthetic infections (Q = 9.2606, I2 = 78.40%, 95% CI: 1.401 to 4.070, OR: 2.388, Z= 3.200, p<0.001).Conclusion: All technologies were reported to have good biocompatibility and were effective in the reduction of post-operative peri-prosthetic infection rates.


2017 ◽  
Vol 46 (11) ◽  
pp. 1429-1436 ◽  
Author(s):  
M.B. Guimarães ◽  
T.H. Antes ◽  
M.B. Dolacio ◽  
D.D. Pereira ◽  
M. Marquezan

Sign in / Sign up

Export Citation Format

Share Document