Patient-specific, printed titanium implants for reconstruction of mandibular continuity defects: A systematic review of the evidence

2019 ◽  
Vol 47 (6) ◽  
pp. 968-976 ◽  
Author(s):  
Alexander MC. Goodson ◽  
Madhav A. Kittur ◽  
Peter L. Evans ◽  
E. Mark Williams
2021 ◽  
Vol 22 (7) ◽  
pp. 3800
Author(s):  
Ingmar A. J. van Hengel ◽  
Melissa W. A. M. Tierolf ◽  
Lidy E. Fratila-Apachitei ◽  
Iulian Apachitei ◽  
Amir A. Zadpoor

Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.


2021 ◽  
pp. 219256822098227
Author(s):  
Max J. Scheyerer ◽  
Ulrich J. A. Spiegl ◽  
Sebastian Grueninger ◽  
Frank Hartmann ◽  
Sebastian Katscher ◽  
...  

Study Design: Systematic review. Objectives: Osteoporosis is one of the most common diseases of the elderly, whereby vertebral body fractures are in many cases the first manifestation. Even today, the consequences for patients are underestimated. Therefore, early identification of therapy failures is essential. In this context, the aim of the present systematic review was to evaluate the current literature with respect to clinical and radiographic findings that might predict treatment failure. Methods: We conducted a comprehensive, systematic review of the literature according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) checklist and algorithm. Results: After the literature search, 724 potentially eligible investigations were identified. In total, 24 studies with 3044 participants and a mean follow-up of 11 months (range 6-27.5 months) were included. Patient-specific risk factors were age >73 years, bone mineral density with a t-score <−2.95, BMI >23 and a modified frailty index >2.5. The following radiological and fracture-specific risk factors could be identified: involvement of the posterior wall, initial height loss, midportion type fracture, development of an intravertebral cleft, fracture at the thoracolumbar junction, fracture involvement of both endplates, different morphological types of fractures, and specific MRI findings. Further, a correlation between sagittal spinal imbalance and treatment failure could be demonstrated. Conclusion: In conclusion, this systematic review identified various factors that predict treatment failure in conservatively treated osteoporotic fractures. In these cases, additional treatment options and surgical treatment strategies should be considered in addition to follow-up examinations.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0000
Author(s):  
Samuel Adams ◽  
Travis Dekker ◽  
John Steele ◽  
Kamran Hamid

Category: Ankle,Ankle Arthritis,Basic Sciences/Biologics,Trauma Introduction/Purpose: Large lower extremity bony defects, complex foot and ankle deformities, and high-risk arthrodesis situations can be difficult to treat. These challenging pathologies, often require a critical-sizes and/or shaped structural bone void filler which may not be available with allograft bone. The advancement of 3D printing technology has allowed for the use of custom designed implants for foot and ankle surgery. This study reports on the radiographic and functional outcomes of a case series of patients treated with patient-specific 3D printed titanium implants. Methods: Seven consecutive patients who were treated with custom designed 3D printed implant cages for severe bone loss, deformity correction, and arthrodesis procedures were included in this study. A minimum of 1-year follow-up was required. No patients were lost to follow-up. Patients completed preoperative and most recent follow-up VAS for pain, FAAM, and SF-36 outcomes questionnaires. All patients had post-operative radiographs and CT scans to assess bony incorporation. Results: The mean age of these patients was 54.6 (35-73 years of age). The mean follow-up of these seven patients was 17.1 months (range 12 to 31). Radiographic fusion with cage ingrowth and integration occurred in all seven patients verified by CT scan. There was statistically significant improvement in all functional outcome score measures (VAS for pain, FAAM, and SF-36). All patients returned were satisfied with surgery. There were no failures. Case examples are demonstrated in Figure 1. Conclusion: This cohort of patients demonstrated the successful use of custom 3D printed implants to treat complex large bony defects, deformities and arthrodesis procedures of the lower extremity. These implants offer the surgeon a patient specific approach to treat both pain and deformity that is not necessarily available with allograft bone.


2020 ◽  
Author(s):  
Jie feng Liu ◽  
Hebin Xie ◽  
ziwei ye ◽  
Lesan Wang

Abstract Objective:The incidence and mortality of sepsis-induced acute kidney injury is high. Many studies have explored the causes of sepsis-induced acute kidney injury (AKI). However, its predictors are still uncertain; additionally, a complete overview is missing. A systematic review and a meta-analysis were performed to determine the predisposing factors for sepsis-induced AKI. Method: A systematic literature search was performed in the Medline, Embase, Cochrane Library, PubMed and Web of Science databases, with an end date parameter of May 25, 2019. Valid data were retrieved in compliance with the inclusion and exclusion criteria. Result: Forty-seven observational studies were included for analysis. A cumulative number of 55911sepsis patients were evaluated. The incidence of AKI caused by septic shock is the highest. 30 possible risk factors were included in the meta-analysis. The results showed that 20 factors were found to be significant. The odds ratio(OR),95% confidence interval (CI) and Prevalence of the most prevalent predisposing factors for sepsis-induced AKI were as the following: Septic shock[2.88(2.36-3.52), 60.47%], Hypertension[1.43(1.20-1.70),38.39%), Diabetes mellitus[1.59(1.47-1.71),27.57%],Abdominal infection[1.44(1.32-1.58),30.87%], Vasopressors use[2.95(1.67-5.22),64.61%],vasoactive drugs use [3.85(1.89-7.87),63.22%], Mechanical ventilation[1.64(1.24-2.16),68.00%), Positive blood culture[1.60(1.35-1.89), 41.19%], Smoke history[1.60(1.09-2.36),43.09%]. Other risk factors include cardiovascular, coronary artery disease, liver disease, unknow infection, diuretics use, ACEI or ARB, gram-negative bacteria and organ transplant. Conclusion: A large number of factors are associated with AKI development in sepsis patients. Our review can guide risk-reducing interventions, clinical prediction rules, and patient-specific treatment and management strategies for sepsis-induced acute kidney injury.


2020 ◽  
Vol 7 ◽  
pp. 31
Author(s):  
Nthabiseng Nhlapo ◽  
Thywill Cephas Dzogbewu ◽  
Olga de Smidt

An ideal biomaterial should be biointegratable with minimum adverse immune response. Titanium (Ti) and its alloys are widely used biomaterials for manufacturing clinical implants because of their innate biocompatibility. However, the bioinert property of Ti may hinder tissue–implant integration and its bio compatibility nature allows for attachment of bacterial cells on implant surfaces. Nanoparticles (NPs) have been proposed as a possible intervention to overcome these biological shortcomings of Ti-based implants. The aim of the current systematic review was to identify literature that demonstrates enhanced biocompatibility of Ti-based implants by incorporating NPs. Electronic searches were conducted through the PubMed/MEDLINE, ScienceDirect, Web of Science and EBSCOhost databases. Studies published in English were extracted, without restrictions on the year of publication, using the following keywords: ‘biocompatibility’, ‘nanoparticles’, ‘titanium’ and ‘implant’. The guidelines stipulated in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement were followed. A total of 630 articles were identified in the initial search and upon reviewing, 21 articles were selected according to the eligibility criteria. The selected literature showed robust evidence to support the hypothesis that the inclusion of NPs improves biocompatibility of Ti implants. The studies further indicated a close correlation between biocompatibility and antibacterial properties, of which NPs have been proven to characteristically achieve both.


2020 ◽  
Vol 13 (4) ◽  
pp. 329-333
Author(s):  
Maurice Y. Mommaerts ◽  
Paul R. Depauw ◽  
Erik Nout

Study Design: Inlay cranioplasties following partial craniectomy in tumor or trauma cases and onlay cranioplasties for reconstructions of residual developmental skull anomalies are frequently performed using CAD-CAM techniques. Objective: In this case series, we present a novel cranial implant design, being a combination of 3D-printed titanium grade 23 and calcium phosphate paste (CeTi). Methods: The titanium patient-specific implant, manufactured using selective laser melting, has a latticed border with interconnected micropores. The cranioplasty is miniscrew fixed and its border zone subsequently partially filled with calcium phosphate paste to promote osteoinduction and osteoconduction. From April 2017 to April 2019, 8 patients have been treated with such a CeTi implant. The inlay cranioplasties were each time revision surgeries of complicated cases. Results: All implants were successful after a limited follow-up time (range 18-42 months). There were no dehiscences and no infections, and no complaints of thermal conduction. Conclusions: The proposed CeTi cranial implant combines the strength of titanium implants with the biological integration potential of ceramic implants and seems particularly resistant to infection, probably due to the biofunctionalized titanium surface and the antimicrobial activity of elevated intracellular free calcium levels.


CJEM ◽  
2018 ◽  
Vol 20 (S1) ◽  
pp. S106-S107
Author(s):  
L. Siddiqi ◽  
K. Van Aarsen ◽  
A. Iansavitchene ◽  
J. W. Yan

Introduction: Hyperglycemia is a significant cause of morbidity and mortality, often resulting in adverse outcomes such as recurrent ED visits, hospitalization or death. The objective of this study was to perform a systematic review to identify predictors of these adverse outcomes among patients who present to the ED with hyperglycemia. Methods: Electronic searches of Medline and EMBASE were conducted for studies published in English between the years 1946 and June 2017. Studies with patients presenting to the ED with hyperglycemia were eligible for inclusion. Both adult and pediatric populations were included, as were diabetic and non-diabetic patients. Two reviewers independently screened all titles and abstracts for relevance to the research question. If consensus could not be reached, full-length manuscripts were reviewed. For any discrepancy, a third reviewer was consulted, and disagreement was resolved through discussion. Study quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Study- and patient-specific data were then extracted and presented descriptively in the systematic review. Results: Thirteen observational studies were included, with a combined total of 664,829 patients. The studies scored between 5 to 8 on the Quality Assessment Scale out of a possible total of 8. Predictors of adverse outcomes included patients in both older and younger (< 25) age groups, history of diabetes, multiple comorbidities, patients requiring insulin, sepsis and hyperlactatemia, access to a family physician, a sentinel hyperglycemia visit in the past month, and triage glucose level > 20 mmol/L. Protective factors included no admissions in the past year, care from a diabetes team while in hospital, systolic blood pressure between 90-150 mmHg and heart rate > 110 bpm. Conclusion: This systematic review found eight predictors and four protective factors for adverse outcomes in patients presenting to the ED with hyperglycemia. These factors should be considered for easier identification of higher-risk patients for adverse outcomes in order to guide management and follow-up.


Sign in / Sign up

Export Citation Format

Share Document