Digestive activity and stomach temperature in farmed bluefin tuna Thunnus thynnus measured by acoustic tag

2017 ◽  
Vol 90 (6) ◽  
pp. 2504-2511
Author(s):  
G. Díez ◽  
G. Moreno ◽  
T. Galaz ◽  
L. Dagorn ◽  
J. Murua
Author(s):  
Akihiro Shiroza ◽  
Estrella Malca ◽  
John T Lamkin ◽  
Trika Gerard ◽  
Michael R Landry ◽  
...  

Abstract Bluefin tuna spawn in restricted areas of subtropical oligotrophic seas. Here, we investigate the zooplankton prey and feeding selectivity of early larval stages of Atlantic bluefin tuna (ABT, Thunnus thynnus) in larval rearing habitat of the Gulf of Mexico. Larvae and zooplankton were collected during two multi-day Lagrangian experiments during peak spawning in May 2017 and 2018. Larvae were categorized by flexion stage and standard length. We identified, enumerated and sized zooplankton from larval gut contents and in the ambient community. Ciliates were quantitatively important (up to 9%) in carbon-based diets of early larvae. As larvae grew, diet composition and prey selection shifted from small copepod nauplii and calanoid copepodites to larger podonid cladocerans, which accounted for up to 70% of ingested carbon. Even when cladoceran abundances were <0.2 m−3, they comprised 23% of postflexion stage diet. Feeding behaviors of larvae at different development stages were more specialized, and prey selection narrowed to appendicularians and primarily cladocerans when these taxa were more abundant. Our findings suggest that ABT larvae have the capacity to switch from passive selection, regulated by physical factors, to active selection of presumably energetically optimal prey.


10.1654/4135 ◽  
2004 ◽  
Vol 71 (2) ◽  
pp. 245-246 ◽  
Author(s):  
Stephen A. Bullard ◽  
Robert J. Goldstein ◽  
Robert H. Goodwin ◽  
Robin M. Overstreet

Author(s):  
Ciro Balestrieri ◽  
Giovanni Colonna ◽  
Alfonso Giovane ◽  
Gaetano Irace ◽  
Luigi Servillo ◽  
...  

2008 ◽  
Vol 92 (2-3) ◽  
pp. 242-254 ◽  
Author(s):  
Piero Addis ◽  
John Mark Dean ◽  
Paola Pesci ◽  
Ivan Locci ◽  
Rita Cannas ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0141478 ◽  
Author(s):  
Enrique Rodriguez-Marin ◽  
Mauricio Ortiz ◽  
José María Ortiz de Urbina ◽  
Pablo Quelle ◽  
John Walter ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Deirdre Brophy ◽  
Naiara Rodríguez-Ezpeleta ◽  
Igaratza Fraile ◽  
Haritz Arrizabalaga

Abstract Atlantic bluefin tuna (Thunnus thynnus) from the two main spawning populations in the Mediterranean and Gulf of Mexico occur together in the western, central and eastern Atlantic. Stock composition of catches from mixing areas is uncertain, presenting a major challenge to the sustainable management of the fisheries. This study combines genetic and chemical markers to develop an integrated method of population assignment. Stable isotope signatures (δ13C and δ18O) in the otolith core of adults from the two main spawning populations (adult baselines) showed less overlap than those of yearlings (12–18 months old) from western and eastern nursery areas suggesting that some exchange occurs towards the end of the yearling phase. The integrated model combined δ18O with four genetic markers (SNPs) to distinguish the adult baselines with greater accuracy than chemical or genetic markers alone. When used to assign individuals from the mixing areas to their population of origin, the integrated model resolved some (but not all) discrepancies between the chemistry and genetic methods. Some individuals in the mixing area had otolith δ18O values and genetic profiles which when taken together, were not representative of either population. These fish may originate from another Atlantic spawning area or may represent population contingents that move away from the main spawning areas during the first year of life. This complexity in stock structure is not captured by the current two-stock model.


Sign in / Sign up

Export Citation Format

Share Document