Reproductive development and maturity stage benchmarking in a freshwater teleost ruffe Gymnocephalus cernuus L. in Loch Lomond

2020 ◽  
Author(s):  
James W. Treasurer
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12349
Author(s):  
Jianhua Chen ◽  
Hao Xu ◽  
Jian Zhang ◽  
Shengjun Dong ◽  
Quangang Liu ◽  
...  

Background The phenomenon of male sterility widely occurs in Prunus sibirica and has a serious negative impact on yield. We identified the key stage and cause of male sterility and found differentially expressed genes related to male sterility in Prunus sibirica, and we analyzed the expression pattern of these genes. This work aimed to provide valuable reference and theoretical basis for the study of reproductive development and the mechanisms of male sterility in Prunus sibirica. Method The microstructures of male sterile flower buds and male fertile flower buds were observed by paraffin section. Transcriptome sequencing was used to screen genes related to male sterility in Prunus sibirica. Quantitative real-time PCR analysis was performed to verify the transcriptome data. Results Anther development was divided into the sporogenous cell stage, tetrad stage, microspore stage, and pollen maturity stage. Compared with male fertile flower buds, in the microspore stage, the pollen sac wall tissue in the male sterile flower buds showed no signs of degeneration. In the pollen maturity stage, the tapetum and middle layer were not fully degraded, and anther development stopped. Therefore, the microspore stage was the key stage for anther abortion , and the pollen maturity stage was the post stage for anther abortion. A total of 4,108 differentially expressed genes were identified by transcriptome analysis. Among them, 1,899 were up-regulated, and 2,209 were down-regulated in the transcriptome of male sterile flower buds. We found that “protein kinase activity”, “apoptosis process”, “calcium binding”, “cell death”, “cytochrome c oxidase activity”, “aspartate peptidase activity”, “cysteine peptidase activity” and other biological pathways such as “starch and sucrose metabolism” and “proteasome” were closely related to male sterility in Prunus sibirica. A total of 331 key genes were preliminarily screened. Conclusion The occurrence of male sterility in Prunus sibirica involved many biological processes and metabolic pathways. According to the results of microstructure observations, related physiological indexes determination and transcriptome analysis, we reveal that the occurrence of male sterility in Prunus sibirica may be caused by abnormal metabolic processes such as the release of cytochrome c in the male sterile flower buds, the imbalance of the antioxidant system being destroyed, and the inability of macromolecular substances such as starch to be converted into soluble small molecules at the correct stage of reproductive development, resulting in energy loss. As a result, the tapetum cannot be fully degraded, thereby blocking anther development, which eventually led to the formation of male sterility.


2005 ◽  
Vol 62 (5) ◽  
pp. 1053-1059 ◽  
Author(s):  
John M Drake

The North American distribution of the Eurasian ruffe (Gymnocephalus cernuus), an ecologically important and costly invasive fish, is presently limited to the Laurentian Great Lakes. Risk analyses for accidental introductions of ruffe to inland lakes should focus on the chance of establishment for small introductions such as those that would result from transporting ruffe as bait. Here I use Akaike's Information Criterion to select a population growth model for ruffe based on observed population dynamics during the invasion of Loch Lomond, Scotland. This population is regulated by a high carrying capacity and Allee effects were undetected. Parameter estimates obtained from this population forecast that the chance of establishment for possible introductions of ruffe to inland lakes in North America is high. A model for ruffe winter survival suggests that survivorship between introductions and spawning may be an important determinant of establishment success, but that the chance of establishment is high for introductions of only a few individuals. To prevent invasions of ruffe in inland waters, release of ruffe, whether intentional or accidental, should not be tolerated.


Author(s):  
Taber A. Ba-Omar ◽  
Philip F. Prentis

We have recently carried out a study of spermiogenic differentiation in two geographically isolated populations of Aphanius dispar (freshwater teleost), with a view to ascertaining variation at the ultrastructural level. The sampling areas were the Jebel Al Akhdar in the north (Group A) and the Dhofar region (Group B) in the south. Specimens from each group were collected, the testes removed, fixed in Karnovsky solution, post fixed in OsO, en bloc stained with uranyl acetate and then routinely processed to Agar 100 resin, semi and ultrathin sections were prepared for study.


Sign in / Sign up

Export Citation Format

Share Document