scholarly journals Enhanced flood mapping using synthetic aperture radar (SAR) images, hydraulic modelling, and social media: A case study of Hurricane Harvey (Houston, TX)

2020 ◽  
Vol 13 (4) ◽  
Author(s):  
Vincenzo Scotti ◽  
Mario Giannini ◽  
Francesco Cioffi
2021 ◽  
Vol 7 (3) ◽  
pp. 267
Author(s):  
Pollen Chakma ◽  
Aysha Akter

Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165  gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system.


2020 ◽  
Vol 12 (14) ◽  
pp. 5784 ◽  
Author(s):  
Meimei Zhang ◽  
Fang Chen ◽  
Dong Liang ◽  
Bangsen Tian ◽  
Aqiang Yang

Floods are some of the most serious and devastating natural hazards on earth, bringing huge threats to lives, properties, and living environments. Rapid delineation of the spatial extent of flooding is of great importance for the dynamic monitoring of flood evolution and corresponding emergency strategies. Some of the current flood mapping methods mainly process single date images characterized by simple flood situations and homogenous backgrounds. Although other methods show good performance for images with harsh conditions for floods, they must be trained—many times based on pre-classified samples—or undergo complicated parameter tuning processes, which require computation efforts. The widely used change detection methods utilize multi-temporal Synthetic Aperture Radar (SAR) images for the detection of flood area, but the results are largely influenced by the quality of defined reference images. Furthermore, these methods were mostly applied for some river basin floods, which are not effective for the large scale, semi-arid regions with complex flood conditions, and various land cover types. All of these extremely limited the use of these methods for the timely and accurate extraction of the spatial distribution pattern of floods in other typical and broad areas. Based on the above considerations, this paper presents a new method for rapidly determining the extent of flooding in large, semi-arid areas with challenging environmental conditions, based on multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) data. First, a preprocessing scheme is applied to perform geometric correction and to estimate the intensity of the imagery. Second, an automatic thresholding procedure is used to generate an initial land and water classification through the integration of the probability density distribution. A fuzzy logic-based approach, combining SAR backscattering information and other auxiliary data, is then used to refine the initial classified image. The fuzzy logic-based refinement removes areas that look similar to water in the SAR images, significantly enhancing the flood mapping accuracy. Finally, a post-processing step consisting of morphological operations and extraction improves the homogeneity of the extracted flood segments, discards isolated pixels, and gives the final flood map. This method can automatically detect the extent of floods at little computational cost. As Sentinel-1 data are publicly available and have a fast repeat cycle, the procedure can provide near real time results for rapid emergency response following flash floods. The accuracy of the proposed method is assessed at three test sites in Pakistan, which covered diverse landscapes and suffered large scale serious flooding after a long and severe drought in 2015. In comparison with the more recent studies from Ohki et al., 2020, and Shahabi et al., 2020, our results indicate the best spatial agreement with GF-2 panchromatic multi-spectral (PMS) water classification, with an encouraging overall accuracy ranging from 91.1% to 96.6%, and Kappa coefficients ranging from 0.893 to 0.954. Especially for the areas with fragmented floods, heterogeneous backgrounds, and the areas where samples are highly unbalanced in the SAR images, our method combines the global statistics and local relationships of backscattering properties, terrain, and other auxiliary information, enabling to effectively preserve the detailed structures and also remove the noise.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


Landslides ◽  
2021 ◽  
Author(s):  
Norma Davila Hernandez ◽  
Alexander Ariza Pastrana ◽  
Lizeth Caballero Garcia ◽  
Juan Carlos Villagran de Leon ◽  
Antulio Zaragoza Alvarez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document