Combined in-situ and Persistent Scatterers Interferometry Synthetic Aperture Radar (PSInSAR) monitoring of land surface deformation in urban environments - case study: tunnelling works in Bucharest (Romania)

2021 ◽  
Vol 42 (7) ◽  
pp. 2641-2662
Author(s):  
Mohamed Amine Boukhemacha ◽  
Delia Teleaga ◽  
Manole-Stelian Serbulea ◽  
Valentin Poncos ◽  
Irina Serpescu ◽  
...  
Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 124 ◽  
Author(s):  
Fabio Cian ◽  
José Blasco ◽  
Lorenzo Carrera

The sub-Saharan African coast is experiencing fast-growing urbanization, particularly around major cities. This threatens the equilibrium of the socio-ecosystems where they are located and on which they depend: underground water resources are exploited with a disregard for sustainability; land is reclaimed from wetlands or lagoons; built-up areas, both formal and informal, grow without adequate urban planning. Together, all these forces can result in land surface deformation, subsidence or even uplift, which can increase risk within these already fragile socio-ecosystems. In particular, in the case of land subsidence, the risk of urban flooding can increase significantly, also considering the contribution of sea level rise driven by climate change. Monitoring such fast-changing environments is crucial to be able to identify key risks and plan adaptation responses to mitigate current and future flood risks. Persistent scatterer interferometry (PSI) with synthetic aperture radar (SAR) is a powerful tool to monitor land deformation with high precision using relatively low-cost technology, also thanks to the open access data of Sentinel-1, which provides global observations every 6 days at 20-m ground resolution. In this paper, we demonstrate how it is possible to monitor land subsidence in urban coastal areas by means of permanent scatterer interferometry and Sentinel-1, exploiting an automatic procedure based on an integration of the Sentinel Application Platform (SNAP) and the Stanford Method for Persistent Scatterers (StaMPS). We present the results of PSI analysis over the cities of Banjul (the Gambia) and Lagos (Nigeria) showing a comparison of results obtained with TerraSAR-X, Constellation of Small Satellites for the Mediterranean Basin Observation (COSMO-SkyMed) and Environmental Satellite advanced synthetic aperture radar (Envisat-ASAR) data. The methodology allows us to highlight areas of high land deformation, information that is useful for urban development, disaster risk management and climate adaptation planning.


2018 ◽  
Vol 10 (11) ◽  
pp. 1781 ◽  
Author(s):  
Mehdi Darvishi ◽  
Romy Schlögel ◽  
Christian Kofler ◽  
Giovanni Cuozzo ◽  
Martin Rutzinger ◽  
...  

The Copernicus Sentinel-1 mission provides synthetic aperture radar (SAR) acquisitions over large areas with high temporal and spatial resolution. This new generation of satellites providing open-data products has enhanced the capabilities for continuously studying Earth surface changes. Over the past two decades, several studies have demonstrated the potential of differential synthetic aperture radar interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in mountainous environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in nonurban areas), atmospheric conditions, or high ground surface velocity. In this study, the kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tyrol, Italy), are monitored by a network of three permanent and 13 monthly measured benchmark points measured with the differential global navigation satellite system (DGNSS) technique. The slope displacement rates are found to be highly unsteady and reach several meters a year. This paper focuses firstly on evaluating the performance of DInSAR changing unwrapping and coherence parameters with Sentinel-1 imagery, and secondly, on applying DInSAR with DGNSS measurements to monitor an active and complex landslide. To this end, 41 particular SAR images, coherence thresholds, and 2D and 3D unwrapping processes give various results in terms of reliability and accuracy, supporting the understanding of the landslide velocity field. Evolutions of phase changes are analysed according to the coherence, the changing field conditions, and the monitored ground-based displacements.


2013 ◽  
Vol 184 (4-5) ◽  
pp. 441-450 ◽  
Author(s):  
Yu-Yia Wu ◽  
Jyr-Ching Hu ◽  
Geng-Pei Lin ◽  
Chung-Pai Chang ◽  
Hsin Tung ◽  
...  

Abstract Persistent scatterers SAR interferometry (PS-InSAR) was employed to monitor surface deformation in and around the Tainan tableland using 20 advanced synthetic aperture radar (ASAR) images from the ENVISAT satellite taken during the period from 2005 May 19 to 2008 September 25. In our study, we have found that the uplift rate of the northern Tainan tableland is faster than the southern tableland. The slant range displacement (SRD) rate for the area north along the precise leveling array is about 5 to 10 mm/yr with respect to the western edge of the Tainan tableland, whereas the SRD rate for the area south of the leveling array is about 1 to 5 mm/yr. In addition, the uplifted area extends eastward to the Tawan lowland with a maximum SRD rate of nearly 10 mm/yr, which is almost the same as the rate of the Tainan tableland. Results of this study differ from those suggested in previous researches that employed ERS-1/2 radar images taken from 1996 to 1999 and the differential interferometry synthetic aperture radar (D-InSAR) technique. Our findings indicated that the Tawan lowland no longer subsides with respect to the western edge of the Tainan tableland, and that both northern and southern areas are experiencing uplift.


Author(s):  
A. M. H. Ansar ◽  
A. H. M. Din ◽  
A. S. A. Latip ◽  
M. N. M. Reba

Abstract. Technology advancement has urged the development of Interferometric Synthetic Aperture Radar (InSAR) to be upgraded and transformed. The main contribution of the InSAR technique is that the surface deformation changes measurements can achieve up to millimetre level precision. Environmental problems such as landslides, volcanoes, earthquakes, excessive underground water production, and other phenomena can cause the earth's surface deformation. Deformation monitoring of a surface is vital as unexpected movement, and future behaviour can be detected and predicted. InSAR time series analysis, known as Persistent Scatterer Interferometry (PSI), has become an essential tool for measuring surface deformation. Therefore, this study provides a review of the PSI techniques used to measure surface deformation changes. An overview of surface deformation and the basic principles of the four techniques that have been developed from the improvement of Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), which is Small Baseline Subset (SBAS), Stanford Method for Persistent Scatterers (StaMPS), SqueeSAR and Quasi Persistent Scatterer (QPS) were summarised to perceive the ability of these techniques in monitoring surface deformation. This study also emphasises the effectiveness and restrictions of each developed technique and how they suit Malaysia conditions and environment. The future outlook for Malaysia in realising the PSI techniques for structural monitoring also discussed in this review. Finally, this review will lead to the implementation of appropriate techniques and better preparation for the country's structural development.


Author(s):  
A. Jamali ◽  
A. Abdul Rahman

Abstract. Disasters including flash floods, earthquakes, and landslides have huge economic and social losses besides their impact on environmental disruption. Studying environmental changes due to climate change can improve public and expert sector’s awareness and response towards future disastrous events. Synthetic Aperture Radar (SAR) data and Interferometric Synthetic Aperture Radar (InSAR) technologies are valuable tools for flood modeling and surface deformation modeling. This paper proposes an efficient approach to detect the flooded area changes using Sentinel-1A over Ramsar flood on 5th October 2018. For detection of the flooded area due to flash flood SARPROZ in MATLAB programming language is used and discussed. Flooded areas in Ramsar are detected based on the change detection modeling using normalized difference values of amplitude belonging to the master image (on 28th September 2018) and the slave image (on 10th October 2018).


2021 ◽  
Vol 13 (4) ◽  
pp. 785
Author(s):  
Sen Zhang ◽  
Qigang Jiang ◽  
Chao Shi ◽  
Xitong Xu ◽  
Yundi Gong ◽  
...  

Kuh-e-Namak (Dashti) namakier is one of the most active salt diapirs along the Zagros fold–thrust belt in Iran. Its surface deformation should be measured to estimate its long-term kinematics. Ten Sentinel-2 optical images acquired between October 2016 and December 2019 were processed by using Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) method. Forty-seven Sentinel-1 ascending Synthetic Aperture Radar (SAR) images acquired between April 2017 and December 2019 were processed by using Small Baseline Subset Synthetic Aperture Radar Interferometry (SBAS-InSAR) method. The deformation of Kuh-e-Namak (Dashti) namakier was measured using both methods. Then, meteorological data were utilized to explore the relationship between the kinematics of the namakier and weather conditions and differences in macrodeformation behavior of various rock salt types. The advantages and disadvantages of COSI-Corr and SBAS-InSAR methods in measuring the deformation of the namakier were compared. The results show that: (1) The flank subsides in the dry season and uplifts in the rainy season, whereas the dome subsides in the rainy season and uplifts in the dry season. Under extreme rainfall conditions, the namakier experiences permanent plastic deformation. (2) The “dirty” rock salt of the namakier is more prone to flow than the “clean” rock salt in terms of macrodeformation behavior. (3) In the exploration of the kinematics of the namakier via the two methods, COSI-Corr is superior to SBAS-InSAR on a spatial scale, but the latter is superior to the former on a time scale.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Eszter Békési ◽  
Peter A. Fokker ◽  
Joana E. Martins ◽  
Jon Limberger ◽  
Damien Bonté ◽  
...  

Surface deformation due to fluid extraction can be detected by satellite-based geodetic sensors, providing important insights on subsurface geomechanical properties. In this study, we use Differential Interferometric Synthetic Aperture Radar (DInSAR) observations to measure ground deformation due to fluid extraction at the Los Humeros Geothermal Field (Puebla, Mexico). Our main goal is to reveal the pressure distribution in the reservoir and to identify reservoir compartmentalization, which can be important aspects for optimizing the production of the field. The result of the PS-InSAR (Persistent Scatterer by Synthetic Aperture Radar Interferometry) analysis shows that the subsidence at the LHGF was up to 8 mm/year between April 2003 and March 2007, which is small relative to the produced volume of 5×106 m3/year. The subsidence pattern indicates that the geothermal field is controlled by sealing faults separating the reservoir into several blocks. To assess if this is the case, we relate surface movements with volume changes in the reservoir through analytical solutions for different types of nuclei of strain. We constrain our models with the movements of the PS points as target observations. Our models imply small volume changes in the reservoir, and the different nuclei of strain solutions differ only slightly. These findings suggest that the pressure within the reservoir is well supported and that reservoir recharge is taking place.


2020 ◽  
Vol 12 (23) ◽  
pp. 3970
Author(s):  
Antonio Sánchez-Román ◽  
Ananda Pascual ◽  
Marie-Isabelle Pujol ◽  
Guillaume Taburet ◽  
Marta Marcos ◽  
...  

The quality of the Data Unification and Altimeter Combination System (DUACS) Sentinel-3A altimeter data in the coastal area of the European seas is investigated through a comparison with in situ tide gauge measurements. The comparison was also conducted using altimetry data from Jason-3 for inter-comparison purposes. We found that Sentinel-3A improved the root mean square differences (RMSD) by 13% with respect to the Jason-3 mission. In addition, the variance in the differences between the two datasets was reduced by 25%. To explain the improved capture of Sea Level Anomaly by Sentinel-3A in the coastal band, the impact of the measurement noise on the synthetic aperture radar altimeter, the distance to the coast, and Long Wave Error correction applied on altimetry data were checked. The results confirmed that the synthetic aperture radar altimeter instrument onboard the Sentinel-3A mission better solves the signal in the coastal band. Moreover, the Long Wave Error processing contributes to reduce the errors in altimetry, enhancing the consistency between the altimeter and in situ datasets.


Sign in / Sign up

Export Citation Format

Share Document