scholarly journals Cellulose ether treatment in vivo generates chronic wasting disease prions with reduced protease resistance and delayed disease progression

2019 ◽  
Vol 152 (6) ◽  
pp. 727-740 ◽  
Author(s):  
Samia Hannaoui ◽  
Maria Immaculata Arifin ◽  
Sheng Chun Chang ◽  
Jie Yu ◽  
Preetha Gopalakrishnan ◽  
...  

2011 ◽  
Vol 85 (17) ◽  
pp. 9235-9238 ◽  
Author(s):  
B. Race ◽  
K. Meade-White ◽  
M. W. Miller ◽  
K. A. Fox ◽  
B. Chesebro


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1454
Author(s):  
Satish K. Nemani ◽  
Jennifer L. Myskiw ◽  
Lise Lamoureux ◽  
Stephanie A. Booth ◽  
Valerie L. Sim

The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt–Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.



2021 ◽  
Vol 22 (5) ◽  
pp. 2271
Author(s):  
Maria Immaculata Arifin ◽  
Samia Hannaoui ◽  
Sheng Chun Chang ◽  
Simrika Thapa ◽  
Hermann M. Schatzl ◽  
...  

Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal’s susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal’s genetics in CWD can help to predict, contain, or prevent transmission of CWD.



PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17450 ◽  
Author(s):  
Chad J. Johnson ◽  
Allen Herbst ◽  
Camilo Duque-Velasquez ◽  
Joshua P. Vanderloo ◽  
Phil Bochsler ◽  
...  


2010 ◽  
Vol 84 (10) ◽  
pp. 5097-5107 ◽  
Author(s):  
Candace K. Mathiason ◽  
Jeanette Hayes-Klug ◽  
Sheila A. Hays ◽  
Jenny Powers ◽  
David A. Osborn ◽  
...  

ABSTRACT Substantial evidence for prion transmission via blood transfusion exists for many transmissible spongiform encephalopathy (TSE) diseases. Determining which cell phenotype(s) is responsible for trafficking infectivity has important implications for our understanding of the dissemination of prions, as well as their detection and elimination from blood products. We used bioassay studies of native white-tailed deer and transgenic cervidized mice to determine (i) if chronic wasting disease (CWD) blood infectivity is associated with the cellular versus the cell-free/plasma fraction of blood and (ii) in particular if B-cell (MAb 2-104+), platelet (CD41/61+), or CD14+ monocyte blood cell phenotypes harbor infectious prions. All four deer transfused with the blood mononuclear cell fraction from CWD+ donor deer became PrPCWD positive by 19 months postinoculation, whereas none of the four deer inoculated with cell-free plasma from the same source developed prion infection. All four of the deer injected with B cells and three of four deer receiving platelets from CWD+ donor deer became PrPCWD positive in as little as 6 months postinoculation, whereas none of the four deer receiving blood CD14+ monocytes developed evidence of CWD infection (immunohistochemistry and Western blot analysis) after 19 months of observation. Results of the Tg(CerPrP) mouse bioassays mirrored those of the native cervid host. These results indicate that CWD blood infectivity is cell associated and suggest a significant role for B cells and platelets in trafficking CWD infectivity in vivo and support earlier tissue-based studies associating putative follicular B cells with PrPCWD. Localization of CWD infectivity with leukocyte subpopulations may aid in enhancing the sensitivity of blood-based diagnostic assays for CWD and other TSEs.



2001 ◽  
Vol 71 (3) ◽  
pp. 480-486
Author(s):  
Florica Barbuceanu ◽  
Stelian Baraitareanu ◽  
Stefania-Felicia Barbuceanu ◽  
Gabriel Predoi

This paper describes the current diagnostic methods of Chronic Wasting Disease (CWD) in cervides used between 2013 and 2017 in Romania. The active surveillance of CWD involves the targeted groups screening by using rapid diagnostic tests (e.g., antigen capture enzyme immunoassay). If the first test does not provide certain negative results, then the confirmatory methods have been used, i.e. histopathology, immunohistochemistry and Western immunoblotting. These tests did not lead to the detection of CWD prions (PrPCWD) in Romania. This may be due to the absence or insufficient quantity of PrPCWD in samples, below the threshold of confirmatory tests.





Sign in / Sign up

Export Citation Format

Share Document