prion strains
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 45)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Forrest Hoyt ◽  
Heidi G. Standke ◽  
Efrosini Artikis ◽  
Cindi L. Schwartz ◽  
Bryan Hansen ◽  
...  

Little is known about the structural basis of prion strains. Here we provide a high (3.0 Å) resolution cryo-electron microscopy-based structure of brain-derived fibrils of the mouse anchorless RML scrapie strain which, like the recently determined hamster 263K strain, has a parallel in-register β-sheet-based core. However, detailed comparisons reveal that variations in shared structural motifs provide a basis for prion strain determination.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2453
Author(s):  
Zoe J. Lambert ◽  
Justin J. Greenlee ◽  
Eric D. Cassmann ◽  
M. Heather West Greenlee

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jean-Yves Douet ◽  
Alvina Huor ◽  
Hervé Cassard ◽  
Séverine Lugan ◽  
Naïma Aron ◽  
...  

AbstractTreatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt–Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009795
Author(s):  
Samia Hannaoui ◽  
Elizabeth Triscott ◽  
Camilo Duque Velásquez ◽  
Sheng Chun Chang ◽  
Maria Immaculata Arifin ◽  
...  

Chronic wasting disease (CWD) is a prion disease affecting cervids. Polymorphisms in the prion protein gene can result in extended survival of CWD-infected animals. However, the impact of polymorphisms on cellular prion protein (PrPC) and prion properties is less understood. Previously, we characterized the effects of a polymorphism at codon 116 (A>G) of the white-tailed deer (WTD) prion protein and determined that it destabilizes PrPC structure. Comparing CWD isolates from WTD expressing homozygous wild-type (116AA) or heterozygous (116AG) PrP, we found that 116AG-prions were conformationally less stable, more sensitive to proteases, with lower seeding activity in cell-free conversion and reduced infectivity. Here, we aimed to understand CWD strain emergence and adaptation. We show that the WTD-116AG isolate contains two different prion strains, distinguished by their host range, biochemical properties, and pathogenesis from WTD-116AA prions (Wisc-1). Serial passages of WTD-116AG prions in tg(CerPrP)1536+/+ mice overexpressing wild-type deer-PrPC revealed two populations of mice with short and long incubation periods, respectively, and remarkably prolonged clinical phase upon inoculation with WTD-116AG prions. Inoculation of serially diluted brain homogenates confirmed the presence of two strains in the 116AG isolate with distinct pathology in the brain. Interestingly, deglycosylation revealed proteinase K-resistant fragments with different electrophoretic mobility in both tg(CerPrP)1536+/+ mice and Syrian golden hamsters infected with WTD-116AG. Infection of tg60 mice expressing deer S96-PrP with 116AG, but not Wisc-1 prions induced clinical disease. On the contrary, bank voles resisted 116AG prions, but not Wisc-1 infection. Our data indicate that two strains co-existed in the WTD-116AG isolate, expanding the variety of CWD prion strains. We argue that the 116AG isolate does not contain Wisc-1 prions, indicating that the presence of 116G-PrPC diverted 116A-PrPC from adopting a Wisc-1 structure. This can have important implications for their possible distinct capacities to cross species barriers into both cervids and non-cervids.


2021 ◽  
Author(s):  
Kaitlyn Wagner ◽  
Robyn Pierce ◽  
Elizabeth Gordon ◽  
Jennifer R Ballard ◽  
Julie A Moreno ◽  
...  

Chronic wasting disease is an invariably fatal prion disease affecting cervid species world-wide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing prions in the brain to prions in the lymph node. In this study we compared prions from the obex and lymph node of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to see if these differences are conserved across species and locations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alba Marín-Moreno ◽  
Juan Carlos Espinosa ◽  
Patricia Aguilar-Calvo ◽  
Natalia Fernández-Borges ◽  
José Luis Pitarch ◽  
...  

AbstractE/D163 polymorphism of dog prion protein (PrP) has been recently proposed as the variant responsible for canid prion resistance. To further investigate the protective role of this variant against prion replication, the transgenic mouse model OvPrP-Tg532 expressing sheep/goat PrP carrying the substitution D162 (equivalent to D163 position of dog PrP) was generated and intracranially inoculated with a broad collection of small ruminant prion strains. OvPrP-Tg532 mice showed resistance to classical bovine spongiform encephalopathy (BSE) from sheep and some classical scrapie isolates from sheep and goat but were susceptible to ovine atypical L-BSE and numerous classical scrapie isolates. Strikingly, some of these classical scrapie isolates showed a shift in their prion strain properties. These results suggest that other PrP residues apart from E/D163 variant of dog PrP or factors distinct than PrP may participate in prion resistance of canids and that different factors may be required for D162 sheep PrP to provide effective protection to sheep against ruminant prions.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009703
Author(s):  
Leonardo M. Cortez ◽  
Satish K. Nemani ◽  
Camilo Duque Velásquez ◽  
Aishwarya Sriraman ◽  
YongLiang Wang ◽  
...  

Prion diseases are transmissible neurodegenerative disorders that affect mammals, including humans. The central molecular event is the conversion of cellular prion glycoprotein, PrPC, into a plethora of assemblies, PrPSc, associated with disease. Distinct phenotypes of disease led to the concept of prion strains, which are associated with distinct PrPSc structures. However, the degree to which intra- and inter-strain PrPSc heterogeneity contributes to disease pathogenesis remains unclear. Addressing this question requires the precise isolation and characterization of all PrPSc subpopulations from the prion-infected brains. Until now, this has been challenging. We used asymmetric-flow field-flow fractionation (AF4) to isolate all PrPSc subpopulations from brains of hamsters infected with three prion strains: Hyper (HY) and 263K, which produce almost identical phenotypes, and Drowsy (DY), a strain with a distinct presentation. In-line dynamic and multi-angle light scattering (DLS/MALS) data provided accurate measurements of particle sizes and estimation of the shape and number of PrPSc particles. We found that each strain had a continuum of PrPSc assemblies, with strong correlation between PrPSc quaternary structure and phenotype. HY and 263K were enriched with large, protease-resistant PrPSc aggregates, whereas DY consisted primarily of smaller, more protease-sensitive aggregates. For all strains, a transition from protease-sensitive to protease-resistant PrPSc took place at a hydrodynamic radius (Rh) of 15 nm and was accompanied by a change in glycosylation and seeding activity. Our results show that the combination of AF4 with in-line MALS/DLS is a powerful tool for analyzing PrPSc subpopulations and demonstrate that while PrPSc quaternary structure is a major contributor to PrPSc structural heterogeneity, a fundamental change, likely in secondary/tertiary structure, prevents PrPSc particles from maintaining proteinase K resistance below an Rh of 15 nm, regardless of strain. This results in two biochemically distinctive subpopulations, the proportion, seeding activity, and stability of which correlate with prion strain phenotype.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009642
Author(s):  
Mohammad Khursheed Siddiqi ◽  
Chae Kim ◽  
Tracy Haldiman ◽  
Miroslava Kacirova ◽  
Benlian Wang ◽  
...  

There is a limited understanding of structural attributes that encode the iatrogenic transmissibility and various phenotypes of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD). Here we report the detailed structural differences between major sCJD MM1, MM2, and VV2 prions determined with two complementary synchrotron hydroxyl radical footprinting techniques—mass spectrometry (MS) and conformation dependent immunoassay (CDI) with a panel of Europium-labeled antibodies. Both approaches clearly demonstrate that the phenotypically distant prions differ in a major way with regard to their structural organization, and synchrotron-generated hydroxyl radicals progressively inhibit their seeding potency in a strain and structure-specific manner. Moreover, the seeding rate of sCJD prions is primarily determined by strain-specific structural organization of solvent-exposed external domains of human prion particles that control the seeding activity. Structural characteristics of human prion strains suggest that subtle changes in the organization of surface domains play a critical role as a determinant of human prion infectivity, propagation rate, and targeting of specific brain structures.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alba Marín-Moreno ◽  
Patricia Aguilar-Calvo ◽  
Juan Carlos Espinosa ◽  
María Zamora-Ceballos ◽  
José Luis Pitarch ◽  
...  

AbstractThe diversity of goat scrapie strains in Europe has recently been studied using bioassays in a wide collection of rodent models, resulting in the classification of classical scrapie into four different categories. However, the sole use of the first passage does not lead to isolate adaptation and identification of the strains involved and might therefore lead to misclassification of some scrapie isolates. Therefore, this work reports the complete transmission study of a wide collection of goat transmissible spongiform encephalopathy (TSE) isolates by intracranial inoculation in two transgenic mouse lines overexpressing either small ruminant (TgGoat-ARQ) or bovine (TgBov) PrPC. To compare scrapie strains in sheep and goats, sheep scrapie isolates from different European countries were also included in the study. Once the species barrier phenomenon was overcome, an accurate classification of the isolates was attained. Thus, the use of just two rodent models allowed us to fully differentiate at least four different classical scrapie strains in small ruminants and to identify isolates containing mixtures of strains. This work reinforces the idea that classical scrapie in small ruminants is a prion disease caused by multiple different prion strains and not by a single strain, as is the case for epidemic classical bovine spongiform encephalopathy (BSE-C). In addition, the clear dissimilarity between the different scrapie strains and BSE-C does not support the idea that classical scrapie is the origin of epidemic BSE-C.


Sign in / Sign up

Export Citation Format

Share Document