Endo‐allopolyploidy of autopolyploids and recurrent hybridization—A possible mechanism to explain the unresolved Y‐genome donor in polyploid Elymus species (Triticeae: Poaceae)

Author(s):  
Quan‐Lan Liu ◽  
Lu Liu ◽  
Song Ge ◽  
Li‐Ping Fu ◽  
Shi‐Qie Bai ◽  
...  
Keyword(s):  
Biologia ◽  
2015 ◽  
Vol 70 (2) ◽  
Author(s):  
Gang Gao ◽  
Jia-bin Deng ◽  
Xue-mei Gou ◽  
Qian Wang ◽  
Chun-bang Ding ◽  
...  

AbstractTo investigate the phylogenetic relationships among Elymus and related diploid genera, the genome donor of Elymus, and the evolutionary history of polyploid Elymus species, nuclear ribosomal internal transcribed spacer (ITS) sequences were analyzed for 10 Elymus species, together with 17 diploid taxa from 5 monogenomic genera. The phylogenetic analyses (Neighbor-Joining) supported two major clades (St and H). Sequence diversity and genealogical analysis suggested that (1) Elymus species were unambiguously closely related to Pseudoroegeria; (2) Pse. stipifolia might be serve as the St genome donor of polyploid Elymus species; (3) the Y genome might be originated from ancestral lineage of Pseudoroegneria (St); (4) the ITS sequences of Elymus were evolutionarily distinct and may clarify parental lineages and phylogenetic relationships in Elymus.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 361-367 ◽  
Author(s):  
Wolfgang Spielmeyer ◽  
Odile Moullet ◽  
André Laroche ◽  
Evans S Lagudah

Abstract A detailed RFLP map was constructed of the distal end of the short arm of chromosome 1D of Aegilops tauschii, the diploid D-genome donor species of hexaploid wheat. Ae. tauschii was used to overcome some of the limitations commonly associated with molecular studies of wheat such as low levels of DNA polymorphism. Detection of multiple loci by most RFLP probes suggests that gene duplication events have occurred throughout this chromosomal region. Large DNA fragments isolated from a BAC library of Ae. tauschii were used to determine the relationship between physical and genetic distance at seed storage protein loci located at the distal end of chromosome 1DS. Highly recombinogenic regions were identified where the ratio of physical to genetic distance was estimated to be <20 kb/cM. These results are discussed in relation to the genome-wide estimate of the relationship between physical and genetic distance.


1971 ◽  
Vol 18 (1) ◽  
pp. 57-69 ◽  
Author(s):  
R. Mitra ◽  
C. R. Bhatia

SUMMARYIsoenzymes of alcohol (ADH), malate (MDH), glutamate (GDH) and isocitrate (IDH) dehydrogenases, and a fast migrating esterase (EST-l) were separated by disk electrophoresis from dry seed extracts of diploid, tetraploid, hexaploid and octaploid species or amphiploids belonging to the subtribe Triticinae. Only ADH and EST-l isoenzymes showed inter-species variation; the other dehydrogenases, which show stringent substrate specificities (‘critical’ enzymes), revealed the same pattern in all diploid and polyploid species. The qualitative zymogram studies showed that (1) the number of variant enzyme bands increased with the level of ploidy, (2) the amphiploid isoenzyme pattern was additive of the parental species, (3) enhancement in the number of bands was due to the presence of not only parental bands, but also hybrid bands formed by association between heteromonomers. Quantitative data were obtained by densitometry of the enzyme bands as well as spectrophotometric measurements of enzyme activity in crude extracts. Increase in the level of enzyme activity was observed with ploidy level. In spite of the evidence that all duplicate/triplicate genes are expressed, increased enzyme activity observed in the polyploid species was not proportional to the level of ploidy or expected gene dosage. On the basis of ADH and EST-l zymograms obtained in 2 × and 4 × wheat, probable zymograms for these enzymes in the B-genome donor to 4 × wheat were extrapolated. Neither Ae. speltoides nor Ae. bicornis showed the extrapolated ADH pattern. Amphiploids involving Ae. speltoides and Triticum monococcum or T. aegilopoides fully reproduced the EST-l zymogram of 4 × wheat, but not the ADH. Ae. bicornis × T. aegilopoides amphiploid showed an ADH zymogram similar to that of 4 × wheat, but the EST-l bands were different.


Genome ◽  
1988 ◽  
Vol 30 (1) ◽  
pp. 36-43 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira

To help elucidate the origin of the B genome in polyploid wheats, karyotypes of Triticum turgidum, Triticum monoccum, and all six purported B genome donors were compared. The analysis utilized a common cytological procedure that employed the most advanced equipment for the measurement of chromosome lengths at metaphase in root tip cells. A comparison of the karyotypes of T. turgidum and T. monococcum permitted the identification of B genome chromosomes of T. turgidum. These consist of two SAT pairs, one ST pair, three SM pairs, and one M pair of homologues. Comparisons of the chromosomes of the B genome of T. turgidum with the karyotypes of the six putative B genome donors showed that only the karyotype of Aegilops searsii was similar to the one deduced for the donor of the B genome in T. turgidum, suggesting that Ae. searsii is, therefore, the most likely donor of the B genome to the polyploid wheats. Support for this conclusion has been derived from geographic, DNA-hybridization, karyotype, morphological, and protein data reported since 1977. Reasons why the B genome donor has not been unequivocally identified are discussed.Key words: phylogeny, karyotypes, Triticum turgidum, Triticum monococcum, B genome, B genome donors.


Biologia ◽  
2016 ◽  
Vol 71 (4) ◽  
Author(s):  
Yang-Yi Li ◽  
Ying-Xia Lei ◽  
Guan-Hui Chai ◽  
Gang Gao ◽  
Jia-Bin Deng ◽  
...  

AbstractTo investigate the Ns genome donor of


2011 ◽  
Vol 59 (1) ◽  
pp. 1 ◽  
Author(s):  
Aimee G. Oliver ◽  
Kara Harnish ◽  
Genlou Sun

Three genera of Triticeae, Elymus, Stenostachys and Australopyrum, are described in the New Zealand flora. Cytological analyses suggested that five basic genomes (St, H, Y, P and W) donated by different diploid species in different combinations exist in the genera Elymus and Stenostachys, whereas Australopyrum species contain the W genome only. Morphological and cytogenetic data suggested that the genome constitution for both E. apricus and E. multiflorus is StYW. Chloroplast DNA and ITS data supported the genome constitution of these Elymus species, but the HW genome constitution was assigned to the Stenostachys species. In this study, sequences of two single copy nuclear genes, RPB2 and DMC1, were used to confirm or refute the genome constitutions of the two Stenostachys species and the two Elymus species from New Zealand, and to analyse their phylogenetic relationships with other Elymus species. Our RPB2 and DMC1 data confirmed that the genome constitution of hexaploid E. apricus is StWY, and tetraploid S. gracilis is HW. The presence of the StW genome in hexaploid E. multiflorus, and the W genome in tetraploid S. laevis is also confirmed. No obvious St genome differentiation between New Zealand and non-New Zealand species is observed. The H genomes in the S. gracilis and S. laevis are closely related to the H genome from North American species, indicating that the H genomes in these two New Zealand species might originate from North American Hordeum species.


Sign in / Sign up

Export Citation Format

Share Document