scholarly journals High-affinity von Willebrand factor binding does not affect the anatomical or hepatocellular distribution of factor VIII in rats

2016 ◽  
Vol 14 (9) ◽  
pp. 1803-1813 ◽  
Author(s):  
C. I. Øie ◽  
K. Roepstorff ◽  
C. Behrens ◽  
J. Bøggild Kristensen ◽  
D. M. Karpf ◽  
...  
1989 ◽  
Vol 257 (3) ◽  
pp. 679-683 ◽  
Author(s):  
A Leyte ◽  
M P Verbeet ◽  
T Brodniewicz-Proba ◽  
J A Van Mourik ◽  
K Mertens

The interaction between human Factor VIII and immobilized multimeric von Willebrand Factor (vWF) was characterized. Equilibrium binding studies indicated the presence of multiple classes of Factor VIII-binding sites on vWF. The high-affinity binding (Kd = 2.1 x 10(-10) M) was restricted to only 1-2% of the vWF subunits. Competition studies with monoclonal antibodies with known epitopes demonstrated that the Factor VIII sequence Lys1673-Arg1689 is involved in the high-affinity interaction with vWF.


FEBS Journal ◽  
2009 ◽  
Vol 277 (2) ◽  
pp. 413-427 ◽  
Author(s):  
Eric Calvo ◽  
Fuyuki Tokumasu ◽  
Daniella M. Mizurini ◽  
Peter McPhie ◽  
David L. Narum ◽  
...  

Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 387-397 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
DK Morisato

The characteristics of the intact factor VIII/von Willebrand factor protein binding to human platelets was compared to 2-mercaptoethanol- treated factor VIII/von Willebrand factor protein and to fractions of plasma factor VIII/von Willebrand factor protein that elute after the void volume. These studies indicate that the factor VIII/von Willebrand factor protein larger size oligomers bind preferentially with high affinity to low capacity sites on human platelets. The intermediate and smaller size oligomers bind with intermediate or low affinity to sites with a much greater capacity. The results from binding analysis are also paralleled by the competitive inhibition of the intact factor VIII/von Willebrand factor protein by the various 2-mercaptoethanol- treated materials. These studies indicate that the two classes of binding sites seen in previous reports of factor VII/von Willebrand factor binding reflect heterogeneity in the oligomer size of the factor VIII/von Willebrand factor protein used in these assays. This study provides a model for understanding some of the normal structure- function relationships of the normal factor VIII/von Willebrand factor protein and the defect(s) in a variant form of von Willebrand's disease. In this form of the disease, decreased factor VIII/von Willebrand factor binding to platelets is reflected in decreased von Willebrand factor activity but coagulant and/or antigen levels are normal or only slightly decreased.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 387-397 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
DK Morisato

Abstract The characteristics of the intact factor VIII/von Willebrand factor protein binding to human platelets was compared to 2-mercaptoethanol- treated factor VIII/von Willebrand factor protein and to fractions of plasma factor VIII/von Willebrand factor protein that elute after the void volume. These studies indicate that the factor VIII/von Willebrand factor protein larger size oligomers bind preferentially with high affinity to low capacity sites on human platelets. The intermediate and smaller size oligomers bind with intermediate or low affinity to sites with a much greater capacity. The results from binding analysis are also paralleled by the competitive inhibition of the intact factor VIII/von Willebrand factor protein by the various 2-mercaptoethanol- treated materials. These studies indicate that the two classes of binding sites seen in previous reports of factor VII/von Willebrand factor binding reflect heterogeneity in the oligomer size of the factor VIII/von Willebrand factor protein used in these assays. This study provides a model for understanding some of the normal structure- function relationships of the normal factor VIII/von Willebrand factor protein and the defect(s) in a variant form of von Willebrand's disease. In this form of the disease, decreased factor VIII/von Willebrand factor binding to platelets is reflected in decreased von Willebrand factor activity but coagulant and/or antigen levels are normal or only slightly decreased.


2005 ◽  
Vol 93 (06) ◽  
pp. 1061-1068 ◽  
Author(s):  
Lea Carmel-Goren ◽  
Yechezkel Barenholz ◽  
Inbal Dayan ◽  
Savely Ostropolets ◽  
Igal Slepoy ◽  
...  

SummaryHaemophilia A is a bleeding disorder caused by the lack of factor VIII (FVIII). We report the prolongation of exogenous FVIII circulation time and haemostatic efficacy by its formulation with PEGylated liposomes (PEGLip). FVIII binds non-covalently but with high affinity in a specific mode with the external surface of PEGLip neither losing its activity nor its binding to von Willebrand Factor. Experiments in haemophilic and non-haemophilic mice indicate that the circulation time and clotting efficacy of PEGLip-formulated exogenous FVIII (PEGLip-FVIII) are significantly enhanced over those of free FVIII. The data support the feasibility of using PEGLip-FVIII to extend the duration of haemostatic efficacy in the treatment of haemophilia A.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e24163 ◽  
Author(s):  
Maartje van den Biggelaar ◽  
Eveline A. M. Bouwens ◽  
Jan Voorberg ◽  
Koen Mertens

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 94-94
Author(s):  
James Fuller ◽  
Joseph Batchelor ◽  
Kevin Knockenhauer ◽  
Hans-Peter Biemann ◽  
Robert Peters

Introduction Coagulation Factor VIII (FVIII) is a serine protease cofactor that directly interacts with coagulation factors IXa and X on activated platelets, and enhances FIXa activity toward FX by 105. von Willebrand Factor (VWF), via its D'D3 domains, interacts with FVIII and prevents premature deposition on phospholipids until activation by thrombin. Thrombin cleavage at Arg1689 of FVIII promotes VWF dissociation by disrupting the FVIII a3 high affinity interaction with the VWF D' domain. VWF extends the half-life of circulating FVIII from less than 3 hours to ~11 hours in humans. While crystal structures of FVIII and VWF D'D3 alone have been solved, the atomic details of a formed complex are unknown. We sought to determine the FVIII-VWF D'D3 complex structure by using BIVV001, our investigational new drug currently in clinical trials for the treatment of Hemophilia A. BIVV001 (rFVIIIFc-VWF-XTEN) is a novel fusion protein consisting of single chain B-domain deleted (BDD) human FVIII, the Fc domain of human immunoglobulin G1 (IgG1), the FVIII-binding D'D3 domain of human von Willebrand factor, and 2 XTEN polypeptide linkers. The Fc, VWF, and XTEN linker portions of the molecule are each designed to extend the half-life of FVIII. We anticipated that the tethering of FVIII to D'D3 through the Fc dimer in BIVV001 would stabilize the complex for structural studies. Given the large size of BIVV001, at 312 kDa, we thought it an ideal target for structure determination by single particle cryo-EM. Methods We collected a total of 3955 micrographs of BIVV001 embedded in vitreous ice at 81,000x magnification using a Titan Krios electron microscope equipped with a Gatan BioQuantum K3 energy filter and camera operating in super-resolution mode. Preferential particle orientation was a major challenge that was overcome through a variety of methods. Micrograph movies were motion-corrected and summed, and over 2 million candidate particle coordinates were extracted. Repeated rounds of reference-free 2D classification resulted in a set of 1.2 million particles that generated a reasonable ab initio/de novo 3D model. Initial full 3D refinements of this model produced a map at approximately 5 Å resolution, into which available crystal structures can be readily fit. Subsequent iterative 3D refinement and 3D classification resulted in a final map at high resolution, into which an atomic model was built. Results The structure of BIVV001 was solved by single particle cryo-EM. D' of VWF interacts with the front face of the C1 and A3 domains of FVIII, consistent with a lower resolution, negative stain EM map (Yee et al. 2015. Blood). Interface residues on FVIII identified in an HDX-MS dataset (Chiu et al. 2015. Blood.) largely correspond to this high affinity interaction. D' protrudes upward from the VWF D3 domain, which sits centrally located between the C1 and C2 domains of FVIII at a 45° tilt. By occupying this position, D3 likely sterically blocks the FVIII C domains from binding to membrane. The VWD3 module of the D3 domain contacts the base of the C1 domain, whereas C8-3 binds to the bottom of the C2 domain. The conserved Ca2+ site in VWD3 identified previously (Dong et al. 2019. Blood.) is in the interface with C1. This is consistent with Yee et al., where docking placed D3 below the C domains. In that study, a lack of density between FVIII and VWF D3 in the 3D reconstruction, due to flexibility, prevented the detailed analysis that is possible here. In this study, flexibility in this region is also apparent, as C2 is less well ordered than the rest of FVIII and VWF D3 is the least well-ordered portion of the resolved structure. The XTEN linkers are not visible in the final map and were not apparent in any 2D class averages. The Fc is absent in most 2D class averages, due to a lack of consistent positioning relative to FVIII. In the rare cases where the Fc is visible, it adopts a preferred position on the back side of FVIII below the A3 protrusion. Conclusions The structure of BIVV001 has been solved by cryo-electron microscopy to high resolution. Alignment with previous results and the averaging out of BIVV001 elaborations suggests the structure obtained here likely represents WT FVIII-D'D3. This structure demonstrates how VWF D'D3 prevents premature FVIII deposition on phospholipids. The structural basis of type 2N von Willebrand Disease mutations in D'D3 can be readily interpreted. Next steps include solving a FVIII-D'D3 dimer structure at high resolution. Disclosures Fuller: Sanofi: Employment. Batchelor:Sanofi: Employment. Knockenhauer:Sanofi: Employment. Biemann:Sanofi: Employment. Peters:Sanofi: Employment.


Sign in / Sign up

Export Citation Format

Share Document