scholarly journals Consensus recommendations on flow cytometry for the assessment of inherited and acquired disorders of platelet number and function: Communication from the ISTH SSC Subcommittee on Platelet Physiology

Author(s):  
Andrew L. Frelinger ◽  
José Rivera ◽  
David E. Connor ◽  
Kathleen Freson ◽  
Andreas Greinacher ◽  
...  
1982 ◽  
Vol 48 (01) ◽  
pp. 108-111 ◽  
Author(s):  
Elisabetta Dejana ◽  
Silvia Villa ◽  
Giovanni de Gaetano

SummaryThe tail bleeding time (BT) in rats definitely varies according to the method applied. Of the various variables that may influence BT, we have evaluated the position (horizontal or vertical) of the tail, the environment (air or saline), the temperature (4°, 23° or 37° C) and the type of anaesthesia. Transection of the tail tip cannot be used to screen drugs active on platelet function since it is sensitive to coagulation defects. Template BT in contrast is not modified by heparin and is sensitive to defects of platelet number and function (“storage pool disease”, dipyridamole-like drugs, exogenous prostacyclin). In contrast the test fails to detect aspirin-induced platelet dysfunction. The evidence reported indicates that thromboxane A2-prostacyclin balance is not a factor regulating BT. Aspirin treatment however may be a precipitating factor when associated with other abnormalities of platelet function.Template BT is a valid screening test for platelet disorders and for antiplatelet drugs.


2011 ◽  
Vol 15 (2) ◽  
pp. 233-239 ◽  
Author(s):  
Denise L. Smith ◽  
Steven J. Petruzzello ◽  
Eric Goldstein ◽  
Uzma Ahmad ◽  
Krishnarao Tangella ◽  
...  
Keyword(s):  

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


Antibodies ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
Jessica Ramadhin ◽  
Vanessa Silva-Moraes ◽  
Thomas Norberg ◽  
Donald Harn

Monoclonal antibodies (mAbs) that recognize glycans are useful tools to assess carbohydrates’ structure and function. We sought to produce IgG mAbs to the human milk oligosaccharide (HMO), lacto-N-fucopentaose III (LNFPIII). LNFPIII contains the Lewisx antigen, which is found on the surface of schistosome parasites. mAbs binding the Lewisx antigen are well-reported in the literature, but mAbs recognizing HMO structures are rare. To generate mAbs, mice were immunized with LNFPIII-DEX (P3DEX) plus CpGs in VacSIM®, a novel vaccine/drug delivery platform. Mice were boosted with LNFPIII-HSA (P3HSA) plus CpGs in Incomplete Freund’s Adjuvant (IFA). Splenocytes from immunized mice were used to generate hybridomas and were screened against LNFPIII conjugates via enzyme-linked immunosorbent assay (ELISA). Three positive hybridomas were expanded, and one hybridoma, producing IgG and IgM antibodies, was cloned via flow cytometry. Clone F1P2H4D8D5 was selected because it produced IgG1 mAbs, but rescreening unexpectedly showed binding to both LNFPIII and lacto-N-neotetraose (LNnT) conjugates. To further assess the specificity of the mAb, we screened it on two glycan microarrays and found no significant binding. This finding suggests that the mAb binds to the acetylphenylenediamine (APD) linker-spacer structure of the conjugate. We present the results herein, suggesting that our new mAb could be a useful probe for conjugates using similar linker spacer structures.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Alexis P. Jiménez-Uribe ◽  
Hugo Valencia-Martínez ◽  
Gregorio Carballo-Uicab ◽  
Luis Vallejo-Castillo ◽  
Emilio Medina-Rivero ◽  
...  

Transferon® is a complex drug based on a mixture of low molecular weight peptides. This biotherapeutic is employed as a coadjuvant in clinical trials of several diseases, including viral infections and allergies. Given that macrophages play key roles in pathogen recognition, phagocytosis, processing, and antigen presentation, we evaluated the effect of Transferon® on phenotype and function of macrophage-like cells derived from THP-1 monocytes. We determined the surface expression of CD80 and CD86 by flow cytometry and IL-1β, TNF-α, and IL-6 levels by ELISA. Transferon® alone did not alter the steady state of PMA-differentiated macrophage-like THP-1 cells. On the contrary, simultaneous stimulation of cells with Transferon® and LPS elicited a significant increase in CD80 (P≤0.001) and CD86 (P≤0.001) expression, as well as in IL-6 production (P≤0.05) compared to the LPS control. CD80 expression and IL-6 production exhibited a positive correlation (r=0.6, P≤0.05) in cells exposed to Transferon® and LPS. Our results suggest that the administration of Transferon® induces the expression of costimulatory molecules and the secretion of cytokines in LPS-activated macrophages. Further studies are necessary to determine the implication of these findings in the therapeutic properties of Transferon®.


Cytometry ◽  
1997 ◽  
Vol 30 (5) ◽  
pp. 213-213 ◽  
Author(s):  
Raul C. Braylan ◽  
Michael J. Borowitz ◽  
Bruce H. Davis ◽  
Gregory T. Stelzer ◽  
Carleton C. Stewart

Sign in / Sign up

Export Citation Format

Share Document