Stoichiometric analysis reveals a unique phosphatidylserine binding site in coagulation factor X

Author(s):  
Divyani Paul ◽  
James H. Morrissey
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 30-30 ◽  
Author(s):  
Raffaella Toso ◽  
Hua Zhu ◽  
Rodney M. Camire

Abstract The zymogen to protease transition in the chymotrypsin-like serine protease family follows a well described mechanism in which bond cleavage at a highly conserved site (Arg15-Ile16; chymotrypsin numbering system) results in the unmasking of a new N-terminus that acts as an intramolecular ligand for Asp194. This new salt-bridge drives a conformational change in the so-called “activation domain”, surface loops consisting of the S1 specificity pocket, oxyanion hole, autolysis loop, and sodium biding site. It is well documented in the trypsin system that Ile16-Asp194 internal salt-bridge formation is allosterically linked to the S1 specificity site; that is changes at one site influence the other and vice versa. Blood coagulation factor Xa (FXa) reversibly associates with its cofactor factor Va (FVa) on a membrane surface in the presence of Ca2+ ions with high affinity; an interaction which is not mimicked by the zymogen FX. To determine whether the FX zymogen to protease transition contributes to the expression of a high affinity FVa binding site, we constructed a series of FXa variants which are shifted along this transition pathway. To generate these “zymogen-like” proteins, we made several substitutions at position 16 or 17, with the intent of destabilizing the intramolecular salt bridge to varying degrees. Following a series of preliminary experiments, three mutants were chosen for expression, purification, and activation with RVV-X: I16L, I16G, and V17A. Kinetic studies using peptidyl substrates and active site directed probes revealed that I16L and V17A have an impaired ability to bind these probes (15 to 25-fold increase in the Km or Ki) while the rate of catalysis (kcat) was reduced by 3-fold compared to wild-type FXa (wtFXa; plasma-derived and recombinant). The I16G variant was not inhibited by any of the probes examined and its chromogenic activity was severely impaired (>500 to 1000-fold), precluding calculation of kinetic parameters. These data are consistent with the idea that destabilization of internal salt-bridge formation (Ile16-Asp194) influences binding at the S1 specificity site. In contrast to these results, assembly of I16L and V17A into prothrombinase almost completely restored the Km for peptidyl substrates while the kcat was still 3-fold reduced, indicating that FVa binding can rescue binding at the active site. Surprisingly, even the Km value for I16G was almost completely restored (3-fold increased compared to wtFXa) when assembled in prothrombinase; however a 60-fold reduction in the kcat was found. Consistent with these data, kinetic studies using prothrombin or prethrombin-1 revealed that each of the FXa variants had a normal Km value when assembled in prothrombinase; while the kcat values where reduced to a similar extent as for the chromogenic substrates. Overall our data indicate that direct binding of these FXa variants to FVa rescues binding at S1 site, suggesting allosteric linkage exists between these sites. Thus the FX zymogen to protease transition not only influences the formation of the S1 pocket, but also contributes in a substantial way to the formation of a FVa binding site.


1974 ◽  
Vol 31 (01) ◽  
pp. 040-051 ◽  
Author(s):  
Gustav Gaudernack ◽  
Åse Gladhaug Berre ◽  
Bjarne Østerud ◽  
Hans Prydz

SummaryMonospecific antisera against the human coagulation factor X have been raised in rabbits by injections of purified antigen. Such antiserum was used to study the cross-reacting material without factor X activity which is present in the blood of warfarin-treated patients and animals as well as to study the changes in factor X during coagulation. One patient with congenital factor X deficiency was also studied.A complete identity was found between factor X in Macaca mulatta and human blood. During warfarin treatment antigenically cross-reacting material appeared in plasma. This was not adsorbed on BaSO4, and inhibited the coagulation activity of normal factor X.Both this material, normal factor X and the cross-reacting material in plasma from a patient congenitally deficient in factor X gave rise to split products during coagulation by the intrinsic pathway, i. e. all of them served as substrates for the intrinsic activator of factor X.


1996 ◽  
Vol 75 (02) ◽  
pp. 313-317 ◽  
Author(s):  
D J Kim ◽  
A Girolami ◽  
H L James

SummaryNaturally occurring plasma factor XFriuli (pFXFr) is marginally activated by both the extrinsic and intrinsic coagulation pathways and has impaired catalytic potential. These studies were initiated to obtain confirmation that this molecule is multi-functionally defective due to the substitution of Ser for Pro at position 343 in the catalytic domain. By the Nelson-Long site-directed mutagenesis procedure a construct of cDNA in pRc/CMV was derived for recombinant factor XFriuli (rFXFr) produced in human embryonic (293) kidney cells. The rFXFr was purified and shown to have a molecular size identical to that of normal plasma factor X (pFX) by gel electrophoretic, and amino-terminal sequencing revealed normal processing cleavages. Using recombinant normal plasma factor X (rFXN) as a reference, the post-translational y-carboxy-glutamic acid (Gla) and (β-hydroxy aspartic acid (β-OH-Asp) content of rFXFr was over 85% and close to 100%, respectively, of expected levels. The specific activities of rFXFr in activation and catalytic assays were the same as those of pFXFr. Molecular modeling suggested the involvement of a new H-bond between the side-chains of Ser-343 and Thr-318 as they occur in anti-parallel (3-pleated sheets near the substrate-binding pocket of pFXFr. These results support the conclusion that the observed mutation in pFXFr is responsible for its dysfunctional activation and catalytic potentials, and that it accounts for the moderate bleeding tendency in the homozygous individuals who possess this variant procoagulant.


1982 ◽  
Vol 47 (02) ◽  
pp. 096-100 ◽  
Author(s):  
K Mertens ◽  
R M Bertina

SummaryThe intrinsic activation of human factor X has been studied in a system consisting of purified factors and in plasma. In both these systems factor Xa stimulated the activation of factor X by factor IXa plus factor VIII This is due to the activation of factor VIII by factor Xa. When this factor Xa is formed via the extrinsic pathway, the extrinsic factor X activator functions as a stimulator of the intrinsic factor X activator.


2021 ◽  
pp. 102570
Author(s):  
Mariana Ebert ◽  
Elmar Raquet ◽  
Sabine Schweisgut ◽  
Peter M. Schmidt ◽  
Thomas Weimer

Sign in / Sign up

Export Citation Format

Share Document