purified antigen
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 9)

H-INDEX

23
(FIVE YEARS 0)

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonio Pedro Fróes de Farias ◽  
José Tadeu Raynal Rocha Filho ◽  
Silvana Beutinger Marchioro ◽  
Luan Santana Moreira ◽  
Andressa Souza Marques ◽  
...  

Abstract Caseous lymphadenitis (CL) is a chronic infectious disease that affects sheep and goats. Many serological tests have been developed to detect the disease; one of the most widely used is the enzyme-linked immunosorbent assay (ELISA), due to its advantages, which include acceptable cost-effectiveness, applicability, sensitivity and specificity. ELISA formulations using recombinant proteins can exhibit significant sensitivity and specificity when using a single purified antigen. DTxR, Trx, TrxR, LexA, SodC, SpaC, NanH, and PknG recombinant proteins can be considered target proteins for ELISA development due to its extracellular or on the cell surface location, which allows a better recognition by the immune system. Therefore, the objectives of this study were to evaluate the antigenic reactivity of Corynebacterium pseudotuberculosis recombinant proteins in goat and sheep serum. Of eight proteins evaluated, rSodC was selected for validation assays with small ruminant serum samples from the semiarid region of the state of Bahia, Brazil. Validation assays with goat serum samples showed that ELISA-rSodC presented sensitivity and specificity of 96% and 94%, respectively. Validation assays with sheep serum showed that ELISA-rSodC exhibited sensitivity and specificity of 95% and 98%, respectively. Analysis of 756 field serum samples showed that rSodC identified 95 positive samples (23%) in goats and 75 positive samples (21%) in sheep. The ELISA with recombinant SodC protein developed in this study discriminated positive and negative serum samples with high levels of sensitivity and specificity. This formulation is promising for epidemiological surveys and CL control programs. Trial registration AEC No 4958051018. 12/18/2018, retrospectively registered


2020 ◽  
Author(s):  
Antonio Pedro Fróes de Farias ◽  
José Tadeu Raynal Rocha Filho ◽  
Silvana Beutinger Marchioro ◽  
Luan Santana Moreira ◽  
Andressa Souza Marques ◽  
...  

Abstract Caseous lymphadenitis (CL) is a chronic infectious disease that affects sheep and goats. Many serological tests have been developed to detect the disease; one of the most widely used is the enzyme-linked immunosorbent assay (ELISA), due to its advantages, which include acceptable cost-effectiveness, applicability, sensitivity and specificity. ELISA formulations using recombinant proteins can exhibit significant sensitivity and specificity when using a single purified antigen. DTxR, Trx, TrxR, LexA, SodC, SpaC, NanH, and PknG recombinant proteins can be considered target proteins for ELISA development due to its extracellular or on the cell surface location, which allows a better recognition by the immune system. Therefore, the objectives of this study were to evaluate the antigenic reactivity of Corynebacterium pseudotuberculosis recombinant proteins in goat and sheep serum. Of eight proteins evaluated, rSodC was selected for validation assays with small ruminant serum samples from the semiarid region of the state of Bahia, Brazil. Validation assays with goat serum samples showed that ELISA-rSodC presented sensitivity and specificity of 96% and 94%, respectively. Validation assays with sheep serum showed that ELISA-rSodC exhibited sensitivity and specificity of 95% and 98%, respectively. Analysis of 756 field serum samples showed that rSodC identified 95 positive samples (23%) in goats and 75 positive samples (21%) in sheep. The ELISA with recombinant SodC protein developed in this study discriminated positive and negative serum samples with high levels of sensitivity and specificity. This formulation is promising for epidemiological surveys and CL control programs.


2020 ◽  
Author(s):  
Antonio Pedro Fróes de Farias ◽  
José Tadeu Raynal Rocha Filho ◽  
Silvana Beutinger Marchioro ◽  
Luan Santana Moreira ◽  
Andressa Souza Marques ◽  
...  

Abstract Caseous lymphadenitis (CL) is a chronic infectious disease that affects sheep and goats. Many serological tests have been developed to detect the disease; one of the most widely used is the enzyme-linked immunosorbent assay (ELISA), due to its advantages. ELISA formulations using recombinant proteins can exhibit significant sensitivity and specificity when using a single purified antigen. DTxR, Trx, TrxR, LexA, SodC, SpaC, NanH, and PknG recombinant proteins can be considered target proteins for ELISA development. Therefore, the objectives of this study were to evaluate the antigenic reactivity of Corynebacterium pseudotuberculosis recombinant proteins in goat and sheep serum. Of eight proteins evaluated, rSodC was selected for validation assays with small ruminant serum samples from the semiarid region of the state of Bahia, Brazil. Validation assays with goat serum samples showed that rSodC presented sensitivity and specificity of 96% and 94%, respectively. Validation assays with sheep serum showed that recombinant SodC exhibited sensitivity and specificity of 95% and 98%, respectively. Analysis of 756 field serum samples showed that rSodC identified 95 positive samples (23%) in goats and 75 positive samples (21%) in sheep. The ELISA with recombinant SodC protein developed in this study discriminated positive and negative serum samples with high levels of sensitivity and specificity. This formulation is promising for epidemiological surveys and CL control programs.


2020 ◽  
Author(s):  
Antonio Pedro Fróes de Farias ◽  
José Tadeu Raynal Rocha Filho ◽  
Silvana Beutinger Marchioro ◽  
Luan Santana Moreira ◽  
Andressa Souza Marques ◽  
...  

Abstract Caseous lymphadenitis (CL) is a chronic infectious disease that affects sheep and goats. Many serological tests have been developed to detect the disease; one of the most widely used is the enzyme-linked immunosorbent assay (ELISA), due to its advantages. ELISA formulations using recombinant proteins can exhibit significant sensitivity and specificity when using a single purified antigen. DTxR, Trx, TrxR, LexA, SodC, SpaC, NanH, and PknG recombinant proteins can be considered target proteins for ELISA development. Therefore, the objectives of this study were to evaluate the antigenic reactivity of Corynebacterium pseudotuberculosis recombinant proteins in goat and sheep serum. Of eight proteins evaluated, rSodC was selected for validation assays with small ruminant serum samples from the semiarid region of the state of Bahia, Brazil. Validation assays with goat serum samples showed that rSodC presented sensitivity and specificity of 96% and 94%, respectively. Validation assays with sheep serum showed that recombinant SodC exhibited sensitivity and specificity of 95% and 98%, respectively. Analysis of 756 field serum samples showed that rSodC identified 95 positive samples (23%) in goats and 75 positive samples (21%) in sheep. The ELISA with recombinant SodC protein developed in this study discriminated positive and negative serum samples with high levels of sensitivity and specificity. This formulation is promising for epidemiological surveys and CL control programs.


2020 ◽  
Vol 295 (41) ◽  
pp. 13981-13993
Author(s):  
Charlotta Preger ◽  
Edvard Wigren ◽  
Elena Ossipova ◽  
Carolyn Marks ◽  
Johan Lengqvist ◽  
...  

Aminoacyl-tRNA synthetases (aaRSs) have long been viewed as mere housekeeping proteins and have therefore often been overlooked in drug discovery. However, recent findings have revealed that many aaRSs have noncanonical functions, and several of the aaRSs have been linked to autoimmune diseases, cancer, and neurological disorders. Deciphering these roles has been challenging because of a lack of tools to enable their study. To help solve this problem, we have generated recombinant high-affinity antibodies for a collection of thirteen cytoplasmic and one mitochondrial aaRSs. Selected domains of these proteins were produced recombinantly in Escherichia coli and used as antigens in phage display selections using a synthetic human single-chain fragment variable library. All targets yielded large sets of antibody candidates that were validated through a panel of binding assays against the purified antigen. Furthermore, the top-performing binders were tested in immunoprecipitation followed by MS for their ability to capture the endogenous protein from mammalian cell lysates. For antibodies targeting individual members of the multi-tRNA synthetase complex, we were able to detect all members of the complex, co-immunoprecipitating with the target, in several cell types. The functionality of a subset of binders for each target was also confirmed using immunofluorescence. The sequences of these proteins have been deposited in publicly available databases and repositories. We anticipate that this open source resource, in the form of high-quality recombinant proteins and antibodies, will accelerate and empower future research of the role of aaRSs in health and disease.


2020 ◽  
Author(s):  
Antonio Pedro Fróes de Farias ◽  
José Tadeu Raynal Rocha Filho ◽  
Silvana Beutinger Marchioro ◽  
Luan Santana Moreira ◽  
Andressa Souza Marques ◽  
...  

Abstract Caseous lymphadenitis (CL) is a chronic infectious disease that affects sheep and goats. Many serological tests have been developed to detect the disease; one of the most widely used is the enzyme-linked immunosorbent assay (ELISA), due to its advantages. ELISA formulations using recombinant proteins can exhibit significant sensitivity and specificity when using a single purified antigen. DTxR, Trx, TrxR, LexA, SodC, SpaC, NanH, and PknG recombinant proteins can be considered target proteins for ELISA development. Therefore, the objectives of this study were to evaluate the antigenic reactivity of Corynebacterium pseudotuberculosis recombinant proteins in goat and sheep serum. Of eight proteins evaluated, rSodC was selected for validation assays with small ruminant serum samples from the semiarid region of the state of Bahia, Brazil. Validation assays with goat serum samples showed that rSodC presented sensitivity and specificity of 96% and 94%, respectively. Validation assays with sheep serum showed that recombinant SodC exhibited sensitivity and specificity of 95% and 98%, respectively. Analysis of 756 field serum samples showed that rSodC identified 95 positive samples (23%) in goats and 75 positive samples (21%) in sheep. The ELISA with recombinant SodC protein developed in this study discriminated positive and negative serum samples with high levels of sensitivity and specificity. This formulation is promising for epidemiological surveys and CL control programs.


2020 ◽  
Author(s):  
Emmanuel Margolin ◽  
Matthew Verbeek ◽  
Ann Meyers ◽  
Ros Chapman ◽  
Anna-Lise Williamson ◽  
...  

AbstractAn effective prophylactic vaccine is urgently needed to protect against SARS-CoV-2 infection. The viral spike, which mediates entry into cells by interacting with the host angiotensin-converting enzyme 2, is the primary target of most vaccines in development. These vaccines aim to elicit protective immunity against the glycoprotein by use of inactivated virus, vector-mediated delivery of the antigen in vivo, or by direct immunization with the purified antigen following expression in a heterologous system. These approaches are mostly dependent on the growth of mammalian or insect cells, which requires a sophisticated infrastructure that is not generally available in developing countries due to the incumbent costs which are prohibitive. Plant-based subunit vaccine production has long been considered as a cheaper alternative, although low expression yields and differences along the secretory pathway to mammalian cells have posed a challenge to producing certain viral glycoproteins. Recent advances that have enabled many of these constraints to be addressed include expressing the requisite human proteins in plants to support the maturation of the protein of interest. In this study we investigated these approaches to support the production of a soluble and putatively trimeric SARS-CoV-2 spike mimetic in Nicotiana benthamiana via transient Agrobacterium-mediated expression. The co-expression of human calreticulin dramatically improved the accumulation of the viral spike, which was barely detectable in the absence of the co-expressed accessory protein. The viral antigen was efficiently processed even in the absence of co-expressed furin, suggesting that processing may have occurred at the secondary cleavage site and was mediated by an endogenous plant protease. In contrast, the spike was not efficiently processed when expressed in mammalian cells as a control, although the co-expression of furin improved processing considerably. This study demonstrates the feasibility of molecular engineering to improve the production of viral glycoproteins in plants, and supports plant-based production of SARS-CoV-2 spike-based vaccines and reagents for serological assays.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 211
Author(s):  
Marcin Pyrski ◽  
Adam Aron Mieloch ◽  
Adam Plewiński ◽  
Aneta Basińska-Barczak ◽  
Aleksandra Gryciuk ◽  
...  

Chronic hepatitis B (CHB) is the cause of severe liver damage, cirrhosis, and hepatocellular carcinoma for over 240 million people worldwide. Nowadays, several types of treatment are being investigated, including immunotherapy using hepatitis B core antigen (HBcAg) assembled into highly immunogenic capsid-like particles (CLPs). Immunogenicity of plant-produced and purified HBcAg, administered parenterally or intranasally, was previously reported. In this study, a novel parenteral–oral vaccination scheme is proposed using plant-derived HBcAg preparations. The antigen for injection was obtained via transient expression in Nicotiana benthamiana. HBcAg-producing transgenic lettuce was lyophilized and used as an orally delivered booster. The intracellular location of plant-produced HBcAg CLPs implies additional protection in the digestive tract during oral immunization. BALB/c mice were intramuscularly primed with 10 µg of the purified antigen and orally boosted twice with 5 or 200 ng of HBcAg. A long-lasting and significant systemic response after boosting with 200 ng HBcAg was induced, with anti-HBc titer of 25,000. Concomitantly, an insignificant mucosal response was observed, with an S-IgA titer of only 500. The profile of IgG isotypes indicates a predominant Th1 type of immune response, supplemented by Th2, after injection–oral vaccination. The results demonstrate that a low dose of parenteral–oral immunization with plant-derived HBcAg can elicit a specific and efficient response. This study presents a potential new pathway of CHB treatment.


2019 ◽  
Author(s):  
Sarah Zinecker ◽  
Mario Jakob ◽  
Ralf Bernd Klösgen

AbstractWe have established an experimental system for the functional analysis of thylakoidal TatB, a component of the membrane-integral TatBC receptor complex of the thylakoidal Twin-arginine protein transport (Tat1) machinery. For this purpose, the intrinsic TatB activity of isolated pea thylakoids was inhibited by affinity-purified antibodies and substituted by supplementing the assays with TatB protein either obtained by in vitro translation or purified after heterologous expression in E. coli. Tat transport activity of such reconstituted thylakoids, which was analyzed with the authentic Tat substrate pOEC16, reached routinely 20 - 25% of the activity of mock-treated thylakoid vesicles analysed in parallel. In contrast, supplementation of the assays with the purified antigen comprising all but the N-terminal transmembrane helix of thylakoidal TatB did not result in Tat transport reconstitution which confirms that transport relies strictly on the activity of the TatB protein added and is not due to restoration of the intrinsic TatB activity by antibody release. Unexpectedly, even a mutant TatB protein (TatB,E10C) assumed to be incapable of assembling into the TatBC receptor complex showed low but considerable transport reconstitution underlining the sensitivity of the approach and its suitability for further functional mutant analyses. Finally, quantification of TatB demand suggests that TatA and TatB are required in approximately equimolar amounts to achieve Tat-dependent thylakoid transport.


2017 ◽  
Vol 93 (1) ◽  
pp. 26-32 ◽  
Author(s):  
A. Ma ◽  
Y. Wang ◽  
X.L. Liu ◽  
H.M. Zhang ◽  
P. Eamsobhana ◽  
...  

AbstractHuman gnathostomiasis is an emerging food-borne parasitic disease caused by nematodes of the genusGnathostoma. Currently, serological tests are commonly applied to support clinical diagnosis. In the present study, a simple and rapid filtration-based test, dot immune–gold filtration assay (DIGFA) was developed using a partially purified antigen ofGnathostomathird-stage larvae (L3). A total of 180 serum samples were tested to evaluate the diagnostic potential of DIGFA for gnathostomiasis. The diagnostic sensitivity and specificity were 96.7% (29/30) and 100% (25/25), respectively. The cross-reactivity with sera from other helminthiasis patients ranged from 0 to 4%, with an average of 1.6% (2/125). DIGFA using a partially purified L3 antigen was not only simple and rapid, but also more accurate than standard assays for the diagnosis of human gnathostomiasis. DIGFA may represent a promising tool for application in laboratories or in the field, without requiring any instrumentation.


Sign in / Sign up

Export Citation Format

Share Document