Signatures of selection in the Iberian honey bee (Apis mellifera iberiensis) revealed by a genome scan analysis of single nucleotide polymorphisms

2013 ◽  
Vol 22 (23) ◽  
pp. 5890-5907 ◽  
Author(s):  
Julio Chávez-Galarza ◽  
Dora Henriques ◽  
J. Spencer Johnston ◽  
João C. Azevedo ◽  
John C. Patton ◽  
...  
2020 ◽  
Vol 42 (4) ◽  
pp. 393-403
Author(s):  
Donghe Li ◽  
Hahn Kang ◽  
Sanghun Lee ◽  
Sungho Won

Abstract Background There are many research studies have estimated the heritability of phenotypic traits, but few have considered longitudinal changes in several phenotypic traits together. Objective To evaluate the progressive effect of single nucleotide polymorphisms (SNPs) on prominent health-related phenotypic traits by determining SNP-based heritability ($$h_{snp}^{2}$$hsnp2) using longitudinal data. Methods Sixteen phenotypic traits associated with major health indices were observed biennially for 6843 individuals with 10-year follow-up in a Korean community-based cohort. Average SNP heritability and longitudinal changes in the total period were estimated using a two-stage model. Average and periodic differences for each subject were considered responses to estimate SNP heritability. Furthermore, a genome-wide association study (GWAS) was performed for significant SNPs. Results Each SNP heritability for the phenotypic mean of all sixteen traits through 6 periods (baseline and five follow-ups) were significant. Gradually, the forced vital capacity in one second (FEV1) reflected the only significant SNP heritability among longitudinal changes at a false discovery rate (FDR)-adjusted 0.05 significance level ($$h_{snp}^{2} = 0.171$$hsnp2=0.171, FDR = 0.0012). On estimating chromosomal heritability, chromosome 2 displayed the highest heritability upon periodic changes in FEV1. SNPs including rs2272402 and rs7209788 displayed a genome-wide significant association with longitudinal changes in FEV1 (P = 1.22 × 10−8 for rs2272402 and P = 3.36 × 10−7 for rs7209788). De novo variants including rs4922117 (near LPL, P = 2.13 × 10−15) of log-transformed high-density lipoprotein (HDL) ratios and rs2335418 (near HMGCR, P = 3.2 $$\times$$× 10−9) of low-density lipoprotein were detected on GWAS. Conclusion Significant genetic effects on longitudinal changes in FEV1 among the middle-aged general population and chromosome 2 account for most of the genetic variance.


2018 ◽  
Author(s):  
Jasmina Uzunović ◽  
Emily B. Josephs ◽  
John R. Stinchcombe ◽  
Stephen I. Wright

AbstractTransposable elements (TEs) make up a significant portion of eukaryotic genomes, and thus are important drivers of genome evolution. However, the evolutionary forces controlling TE copy number and the extent to which TEs affect phenotypic variation on a genome-wide scale are still unclear. We characterised TE insertion polymorphism and its effects on gene expression in 124 whole genome sequences from a single population of Capsella grandiflora. The frequency of insertions was negatively correlated with distance to genes, as well as density of conserved non-coding elements, suggesting that the negative effects of TEs on gene regulation are important in limiting their abundance. Rare TE variants strongly influence gene expression variation, predominantly through downregulation. In contrast, rare single nucleotide polymorphisms (SNPs) contribute equally to up- and down-regulation, but have a weaker effect. Taken together, these results imply that TEs are a significant contributor to gene expression variation and can be more likely than rare SNPs to cause extreme changes in gene expression.Author SummaryTransposable elements (TEs), mobile DNA elements with the ability to excise from the genome and reinsert in new locations, are important components of genomic diversity. Due to their abundance and mobility, TEs play an influential role in genomic evolution, often deleterious. Here we show that TEs in a population of the plant Capsella grandiflora are most deleterious when they insert in genic and regulatory regions. We find that TEs indeed are associated with unusual levels of gene expression, predominantly decreased expression.Furthermore, this effect is stronger than the association of single nucleotide polymorphisms with gene expression variation, highlighting the importance of TE contribution to the maintenance of expression variation.


Sign in / Sign up

Export Citation Format

Share Document