gene expression variation
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 29)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jiong Wan ◽  
Qiyue Wang ◽  
Jiawen Zhao ◽  
Kuntai Dang ◽  
Zhanyong Guo ◽  
...  

Abstract BackgroundHeterosis has been extensively utilization in plant breeding, however, the underlying molecular mechanism remain largely elusive. Maize (Zea mays), which exhibits strong heterosis, is an ideal material for studying heterosis.ResultsIn this study, there is a faster imbibition and development in reciprocal crossing Zhengdan958 hybrids than in their parent lines during seed germination. To investigate the mechanism of heterosis of maize germination, comparative transcriptomic analyses was conducted between reciprocal crossing hybrids and their parental lines. The gene expression patterns showed that 1324 (47.27%) and 1592 (66.44%) of the different expression genes between hybrids and either parental line display parental dominance up or higher levels in Zhengdan958 and Zhengdan958 reciprocal-cross, respectively. Notably, these genes were mainly enriched in metabolic pathways, including carbon metabolism, glycolysis/gluconeogenesis, protein processing in endoplasmic reticulum, etc.ConclusionOur results provide evidence for the higher expression level genes in hybrid involved in metabolic pathways acting as main contributors to maize seed germinating heterosis. These findings provide new insights into the gene expression variation of maize embryo and improve the understanding of maize seed germination heterosis.


Author(s):  
Nobuya Hayashi ◽  
Kyotaro Yamamoto

Gene expression variations of plant leaf are investigated by irradiating seed and leaf with oxygen or air plasmas. Enhancement of leaf growth is induced by oxygen plasma irradiation on seeds, which is supported by increased gene expression for protein synthesis, oxidative-reduction reactions and decreased gene expression concerning DNA methylation and histone modification. Suppression of leaf growth is observed by the oxygen plasma, which would be owing to increased gene expression concerning heat shock protein and redox reaction, and decreased expression of photosynthesis and glycoprotein. Also, gene expression variation due to air plasma irradiation is almost same as that of oxygen plasma. Active oxygen species are major factors in both oxygen and air plasmas for the variation of gene expressions in plant.


2021 ◽  
Author(s):  
Lihong Xie ◽  
Kehan Yu ◽  
Dongjing Chen

Differences in expression levels play important roles in phenotypic variation across species, especially those closely related species with limited genomic differences. Therefore, studying gene evolution at expression level is important for illustrating phenotypic differentiation between species, such as the two Asian rice cultivars, Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica. In this study, we evaluated the gene expression variation at inter-subspecies and intra-subspecies levels using transcriptome data from seedlings of three indica and japonica rice and defined four groups of genes under different natural selections. We found a substantial of genes (about 79%) that are under stabilizing selection at the expression level in both subspecies, while about 16% of genes are under directional selection. Genes under directional selection have higher expression level and lower expression variation than those under stabilizing selection, which suggest a potential explanation to subspecies adaptation to different environments and interspecific phenotypic differences. Subsequent functional enrichment analysis of genes under directional selection shows that indica rice have experienced the adaptation to environmental stresses, and also show differences in biosynthesis and metabolism pathways. Our study provides an avenue of investigating indica-japonica differentiation through gene expression variation, which may guide to rice breeding and yield improvement.


2021 ◽  
Author(s):  
Gabriel Rech ◽  
Santiago Radio ◽  
Sara Guirao-Rico ◽  
Laura Aguilera ◽  
Vivien Horvath ◽  
...  

High quality reference genomes are crucial to understanding genome function, structure and evolution. The availability of reference genomes has allowed us to start inferring the role of genetic variation in biology, disease, and biodiversity conservation. However, analyses across organisms demonstrate that a single reference genome is not enough to capture the global genetic diversity present in populations. In this work, we generated 32 high-quality reference genomes for the well-known model species D. melanogaster and focused on the identification and analysis of transposable element variation as they are the most common type of structural variant. We showed that integrating the genetic variation across natural populations from five climatic regions increases the number of detected insertions by 58%. Moreover, 26% to 57% of the insertions identified using long-reads were missed by short-reads methods. We also identified hundreds of transposable elements associated with gene expression variation and new TE variants likely to contribute to adaptive evolution in this species. Our results highlight the importance of incorporating the genetic variation present in natural populations to genomic studies, which is essential if we are to understand how genomes function and evolve.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianzhong Wu ◽  
Dequan Sun ◽  
Qian Zhao ◽  
Hongjun Yong ◽  
Degui Zhang ◽  
...  

Heterosis, which has greatly increased maize yields, is associated with gene expression patterns during key developmental stages that enhance hybrid phenotypes relative to parental phenotypes. Before heterosis can be more effectively used for crop improvement, hybrid maize developmental gene expression patterns must be better understood. Here, six maize hybrids, including the popular hybrid Zhengdan958 (ZC) from China, were studied. Maize hybrids created in-house were generated using an incomplete diallel cross (NCII)-based strategy from four elite inbred parental lines. Differential gene expression (DEG) profiles corresponding to three developmental stages revealed that hybrid partial expression patterns exhibited complementarity of expression of certain parental genes, with parental allelic expression patterns varying both qualitatively and quantitatively in hybrids. Single-parent expression (SPE) and parent-specific expression (PSE) types of qualitative variation were most prevalent, 43.73 and 41.07% of variation, respectively. Meanwhile, negative super-dominance (NSD) and positive super-dominance (PSD) types of quantitative variation were most prevalent, 31.06 and 24.30% of variation, respectively. During the early reproductive growth stage, the gene expression pattern differed markedly from other developmental stage patterns, with allelic expression patterns during seed development skewed toward low-value parental alleles in hybrid seeds exhibiting significant quantitative variation-associated superiority. Comparisons of qualitative gene expression variation rates between ZC and other hybrids revealed proportions of SPE-DEGs (41.36%) in ZC seed DEGs that significantly exceeded the average proportion of SPE-DEGs found in seeds of other hybrids (28.36%). Importantly, quantitative gene expression variation rate comparisons between ZC and hybrids, except for transgressive expression, revealed that the ZC rate exceeded the average rate for other hybrids, highlighting the importance of partial gene expression in heterosis. Moreover, enriched ZC DEGs exhibiting distinct tissue-specific expression patterns belonged to four biological pathways, including photosynthesis, plant hormone signal transduction, biology metabolism and biosynthesis. These results provide valuable technical insights for creating hybrids exhibiting strong heterosis.


2021 ◽  
Author(s):  
Emma Berdan ◽  
Claire Merot ◽  
Henrik Pavia ◽  
Kerstin Johannesson ◽  
Maren Wellenreuther ◽  
...  

Inversions often underlie complex adaptive traits, but the genic targets inside them are largely unknown. Gene expression profiling provides a powerful way to link inversions with their phenotypic consequences. We examined the effects of the Cf-Inv(1) inversion in the seaweed fly Coelopa frigida on gene expression variation across sexes and life stages. Our analyses revealed that Cf-Inv(1) shapes global expression patterns but the extent of this effect is variable with much stronger effects in adults than larvae. Furthermore, within adults, both common as well as sex specific patterns were found. The vast majority of these differentially expressed genes mapped to Cf-Inv(1). However, genes that were differentially expressed in a single context (i.e. in males, females or larvae) were more likely to be located outside of Cf-Inv(1). By combining our findings with genomic scans for environmentally associated SNPs, we were able to pinpoint candidate variants in the inversion that may underlie mechanistic pathways that determine phenotypes. Together the results in this study, combined with previous findings, support the notion that the polymorphic Cf-Inv(1) inversion in this species is a major factor shaping both coding and regulatory variation resulting in highly complex adaptive effects.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexander Schmitz ◽  
Fuzhong Zhang

Abstract Background Cell-to-cell variation in gene expression strongly affects population behavior and is key to multiple biological processes. While codon usage is known to affect ensemble gene expression, how codon usage influences variation in gene expression between single cells is not well understood. Results Here, we used a Sort-seq based massively parallel strategy to quantify gene expression variation from a green fluorescent protein (GFP) library containing synonymous codons in Escherichia coli. We found that sequences containing codons with higher tRNA Adaptation Index (TAI) scores, and higher codon adaptation index (CAI) scores, have higher GFP variance. This trend is not observed for codons with high Normalized Translation Efficiency Index (nTE) scores nor from the free energy of folding of the mRNA secondary structure. GFP noise, or squared coefficient of variance (CV2), scales with mean protein abundance for low-abundant proteins but does not change at high mean protein abundance. Conclusions Our results suggest that the main source of noise for high-abundance proteins is likely not originating at translation elongation. Additionally, the drastic change in mean protein abundance with small changes in protein noise seen from our library implies that codon optimization can be performed without concerning gene expression noise for biotechnology applications.


2021 ◽  
Author(s):  
David E Torres ◽  
Bart PHJ Thomma ◽  
Michael F Seidl

AbstractTransposable elements (TEs) are a major source of genetic and regulatory variation in their host genome and are consequently thought to play important roles in evolution. Many fungal and oomycete plant pathogens have evolved dynamic and TE-rich genomic regions containing genes that are implicated in host colonization. TEs embedded in these regions have typically been thought to accelerate the evolution of these genomic compartments, but little is known about their dynamics in strains that harbor them. Here, we used whole-genome sequencing data of 42 strains of the fungal plant pathogen Verticillium dahliae to systematically identify polymorphic TEs that may be implicated in genomic as well as in gene expression variation. We identified 2,523 TE polymorphisms and characterize a subset of 8% of the TEs as dynamic elements that are evolutionary younger, less methylated, and more highly expressed when compared with the remaining 92% of the TE complement. As expected, the dynamic TEs are enriched in the dynamic genomic regions. Besides, we observed an association of dynamic TEs with pathogenicity-related genes that localize nearby and that display high expression levels. Collectively, our analyses demonstrate that TE dynamics in V. dahliae contributes to genomic variation, correlates with expression of pathogenicity-related genes, and potentially impacts the evolution of dynamic genomic regions.Significance statementTransposable elements (TEs) are ubiquitous components of genomes and are major sources of genetic and regulatory variation. Many plant pathogens have evolved TE-rich genomic regions containing genes with roles in host colonization, and TEs are thought to contribute to accelerated evolution of these dynamic regions. We analyzed the fungal plant pathogen Verticillium dahliae to identify TE variation between strains and to demonstrate that polymorphic TEs have specific characteristic that separates them from the majority of TEs. Polymorphic TEs are enriched in dynamic genomic regions and are associated with structural variants and highly expressed pathogenicity-related genes. Collectively, our results provide evidence for the hypothesis that dynamic TEs contribute to increased genomic diversity, functional variation, and the evolution of dynamic genomic regions.


Author(s):  
Nickolas Moreno ◽  
Leif Howard ◽  
Scott Relyea ◽  
James Dunnigan ◽  
Matthew Boyer ◽  
...  

RNA sequencing (RNA-Seq) is becoming a popular method for measuring gene expression in non-model organisms, including wild populations sampled in the field. While RNA-Seq can be used to measure gene expression variation among wild-caught individuals and can yield important biological insights into organismal function, technical variables may also influence gene expression estimates. We examined the influence of multiple technical variables on estimated gene expression in a non-model fish species, the westslope cutthroat trout (Oncorhynchus clarkii lewisi), using two RNA-Seq methods: 3’ RNA-Seq and whole mRNA-Seq. We evaluated the effects of dip netting versus electrofishing, and of harvesting tissue immediately versus 5 minutes after euthanasia on estimated gene expression in blood, gill, muscle, and liver. We found higher RNA degradation in the liver compared to the other tissues. There were fewer expressed genes in blood compared to gill and muscle. We found no difference in gene expression among sampling methods or due to a delay in tissue collection. However, we detected fewer genes with 3’ RNA-Seq than with whole mRNA-Seq and found statistically significant differences in gene expression between 3’ RNA-Seq and whole mRNA-Seq. The magnitude and direction of these differences does not appear to be dependent on gene type or length. Our findings indicate that RNA-Seq is robust to the technical variables related to the field sampling techniques tested here but varies based on the tissue sampled and the RNA-Seq library used. This study advances understanding of usefulness of RNA-Seq to study gene expression variation in evolution, ecology, and conservation.


Sign in / Sign up

Export Citation Format

Share Document