scholarly journals Current geography masks dynamic history of gene flow during speciation in northern Australian birds

2019 ◽  
Vol 28 (3) ◽  
pp. 630-643 ◽  
Author(s):  
Joshua V. Peñalba ◽  
Leo Joseph ◽  
Craig Moritz
2017 ◽  
Author(s):  
Joshua V. Peñalba ◽  
Leo Joseph ◽  
Craig Moritz

AbstractDuring early stages of speciation, genome divergence is greatly influenced by gene flow. As populations diverge, geography can allow or restrict gene flow in the form of barriers. Current geography, e.g. whether sister species are allopatric or parapatric, is often used to predict the potential for gene flow during the divergence process. We test the validity of this assumption in eight meliphagoid bird species codistributed across four regions. These regions are separated by known biogeographic barriers within and between northern Australia and Papua New Guinea. We find that bird populations across the same barrier have a range of divergence levels and probability of gene flow regardless of range connectivity. Geographic distance and maximum range connectivity over time can better predict divergence and probability of gene flow than whether populations are currently allopatric or parapatric. We also find support for a nonlinear decrease of the probability of gene flow during the divergence process. This implies that although gene flow influences divergence early in speciation, other factors associated with higher divergence restrict gene flow later in speciation. Current geography may then mislead inferences regarding potential for gene flow during speciation under a complex and dynamic history of geographic and reproductive isolation.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 489
Author(s):  
Bartosz Łabiszak ◽  
Witold Wachowiak

Speciation mechanisms, including the role of interspecific gene flow and introgression in the emergence of new species, are the major focus of evolutionary studies. Inference of taxonomic relationship between closely related species may be challenged by past hybridization events, but at the same time, it may provide new knowledge about mechanisms responsible for the maintenance of species integrity despite interspecific gene flow. Here, using nucleotide sequence variation and utilizing a coalescent modeling framework, we tested the role of hybridization and introgression in the evolutionary history of closely related pine taxa from the Pinus mugo complex and P. sylvestris. We compared the patterns of polymorphism and divergence between taxa and found a great overlap of neutral variation within the P. mugo complex. Our phylogeny reconstruction indicated multiple instances of reticulation events in the past, suggesting an important role of interspecific gene flow in the species divergence. The best-fitting model revealed P. mugo and P. uncinata as sister species with basal P. uliginosa and asymmetric migration between all investigated species after their divergence. The magnitude of interspecies gene flow differed greatly, and it was consistently stronger from representatives of P. mugo complex to P. sylvestris than in the opposite direction. The results indicate the prominent role of reticulation evolution in those forest trees and provide a genetic framework to study species integrity maintained by selection and local adaptation.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Fan Jiang ◽  
Ruiyi Lin ◽  
Changyi Xiao ◽  
Tanghui Xie ◽  
Yaoxin Jiang ◽  
...  

Abstract Background The most prolific duck genetic resource in the world is located in Southeast/South Asia but little is known about the domestication and complex histories of these duck populations. Results Based on whole-genome resequencing data of 78 ducks (Anas platyrhynchos) and 31 published whole-genome duck sequences, we detected three geographic distinct genetic groups, including local Chinese, wild, and local Southeast/South Asian populations. We inferred the demographic history of these duck populations with different geographical distributions and found that the Chinese and Southeast/South Asian ducks shared similar demographic features. The Chinese domestic ducks experienced the strongest population bottleneck caused by domestication and the last glacial maximum (LGM) period, whereas the Chinese wild ducks experienced a relatively weak bottleneck caused by domestication only. Furthermore, the bottleneck was more severe in the local Southeast/South Asian populations than in the local Chinese populations, which resulted in a smaller effective population size for the former (7100–11,900). We show that extensive gene flow has occurred between the Southeast/South Asian and Chinese populations, and between the Southeast Asian and South Asian populations. Prolonged gene flow was detected between the Guangxi population from China and its neighboring Southeast/South Asian populations. In addition, based on multiple statistical approaches, we identified a genomic region that included three genes (PNPLA8, THAP5, and DNAJB9) on duck chromosome 1 with a high probability of gene flow between the Guangxi and Southeast/South Asian populations. Finally, we detected strong signatures of selection in genes that are involved in signaling pathways of the nervous system development (e.g., ADCYAP1R1 and PDC) and in genes that are associated with morphological traits such as cell growth (e.g., IGF1R). Conclusions Our findings provide valuable information for a better understanding of the domestication and demographic history of the duck, and of the gene flow between local duck populations from Southeast/South Asia and China.


2002 ◽  
Vol 102 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Christopher R. J. Boland ◽  
Andrew Cockburn

2019 ◽  
Author(s):  
Jacob S. Berv ◽  
Leonardo Campagna ◽  
Teresa J. Feo ◽  
Ivandy Castro-Astor ◽  
Camila C. Ribas ◽  
...  

AbstractThe complex landscape history of the Neotropics has generated opportunities for population isolation and subsequent diversification that place this region among the most species-rich in the world. Detailed phylogeographic studies are required to uncover the biogeographic histories of Neotropical taxa, to identify evolutionary correlates of diversity, and to reveal patterns of genetic connectivity, disjunction, and potential differentiation among lineages from different areas of endemism. The White-crowned Manakin (Pseudopipra pipra) is a small suboscine passerine bird that is broadly distributed through the subtropical rainforests of Central America, the lower montane cloud forests of the Andes from Colombia to central Peru, the lowlands of Amazonia and the Guianas, and the Atlantic forest of southeast Brazil. Pseudopipra is currently recognized as a single, polytypic biological species. We studied the effect of the Neotropical landscape on genetic and phenotypic differentiation within this species using genomic data derived from double digest restriction site associated DNA sequencing (ddRAD), and mitochondrial DNA. Most of the genetic breakpoints we identify among populations coincide with physical barriers to gene flow previously associated with avian areas of endemism. The phylogenetic relationships among these populations imply a novel pattern of Andean origination for this group, with subsequent diversification into the Amazonian lowlands. Our analysis of genomic admixture and gene flow establishes a complex history of introgression between some western Amazonian populations. These reticulate processes confound our application of standard concatenated and coalescent phylogenetic methods and raise the question of whether a lineage in the western Napo area of endemism should be considered a hybrid species. Lastly, analysis of variation in vocal and plumage phenotypes in the context of our phylogeny supports the hypothesis that Pseudopipra is a species-complex composed of at least 8, and perhaps up to 17 distinct species which have arisen in the last ∼2.5 Ma.


2013 ◽  
Vol 59 (4) ◽  
pp. 458-474 ◽  
Author(s):  
Sen Song ◽  
Shijie Bao ◽  
Ying Wang ◽  
Xinkang Bao ◽  
Bei An ◽  
...  

Abstract Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. Although the effects of recent glacial cycles on genetic diversity have been well studied on species in Europe and North America, genetic legacy of species in the Pleistocene in north and northwest of China where glaciations was not synchronous with the ice sheet development in the Northern Hemisphere or or had little or no ice cover during the glaciations’ period, remains poorly understood. Here we used phylogeographic methods to investigate the genetic structure and population history of the chukar partridge Alec-toris chukar in north and northwest China. A 1,152 – 1,154 bp portion of the mtDNA CR were sequenced for all 279 specimens and a total number of 91 haplotypes were defined by 113 variable sites. High levels of gene flow were found and gene flow estimates were greater than 1 for most population pairs in our study. The AMOVA analysis showed that 81% and 16% of the total genetic variability was found within populations and among populations within groups, respectively. The demographic history of chukar was examined using neutrality tests and mismatch distribution analyses and results indicated Late Pleistocene population expansion. Results revealed that most populations of chukar experienced population expansion during 0.027 ? 0.06 Ma. These results are at odds with the results found in Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023 to 0.018 Ma). Our results are not consistent with the results from avian species of Tibetan Plateau, either, where species experienced population expansion following the retreat of the extensive glaciation period (0.5 to 0.175 Ma).


1985 ◽  
Vol 63 (5) ◽  
pp. 938-945 ◽  
Author(s):  
Patricia S. Muir ◽  
James E. Lotan

Mature serotinous and nonserotinous trees of Pinus contorta Dougl. var. latifolia Engelm. in the Bitterroot Watershed of western Montana do not differ in most life-history characteristics (reproductive or vegetative). No differences between trees of the two cone types were found in height, basal area, basal area growth rates over the lives of the trees, or crown ratio. Cone number, weights of individual cones and seeds, and estimates of reproductive effort were similar in serotinous and non-serotinous trees. Reproductive characteristics were either independent of tree age, or related similarly in trees of the two cone types. Nonserotinous trees may, however, have more seeds per cone than serotinous trees. This difference in seed numbers may be adaptive if serotinous trees invest relatively heavily in cone materials to protect seeds (which are retained in cones for many years), while nonserotinous trees (which shed seeds each year) invest relatively heavily in seeds. Trees of the two cone types differ mainly in the particular types of disturbance favoring their regeneration, but they often grow in the same stands where there are similar selective pressures on most aspects of their biology. Gene flow between them probably homogenizes all but those differences maintained by strong selective pressures.


Sign in / Sign up

Export Citation Format

Share Document