scholarly journals Population structure and demographic history of the chukar partridge Alectoris chukar in China

2013 ◽  
Vol 59 (4) ◽  
pp. 458-474 ◽  
Author(s):  
Sen Song ◽  
Shijie Bao ◽  
Ying Wang ◽  
Xinkang Bao ◽  
Bei An ◽  
...  

Abstract Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. Although the effects of recent glacial cycles on genetic diversity have been well studied on species in Europe and North America, genetic legacy of species in the Pleistocene in north and northwest of China where glaciations was not synchronous with the ice sheet development in the Northern Hemisphere or or had little or no ice cover during the glaciations’ period, remains poorly understood. Here we used phylogeographic methods to investigate the genetic structure and population history of the chukar partridge Alec-toris chukar in north and northwest China. A 1,152 – 1,154 bp portion of the mtDNA CR were sequenced for all 279 specimens and a total number of 91 haplotypes were defined by 113 variable sites. High levels of gene flow were found and gene flow estimates were greater than 1 for most population pairs in our study. The AMOVA analysis showed that 81% and 16% of the total genetic variability was found within populations and among populations within groups, respectively. The demographic history of chukar was examined using neutrality tests and mismatch distribution analyses and results indicated Late Pleistocene population expansion. Results revealed that most populations of chukar experienced population expansion during 0.027 ? 0.06 Ma. These results are at odds with the results found in Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023 to 0.018 Ma). Our results are not consistent with the results from avian species of Tibetan Plateau, either, where species experienced population expansion following the retreat of the extensive glaciation period (0.5 to 0.175 Ma).

2010 ◽  
Vol 60 (4) ◽  
pp. 449-465
Author(s):  
Wen Longying ◽  
Zhang Lixun ◽  
An Bei ◽  
Luo Huaxing ◽  
Liu Naifa ◽  
...  

AbstractWe have used phylogeographic methods to investigate the genetic structure and population history of the endangered Himalayan snowcock (Tetraogallus himalayensis) in northwestern China. The mitochondrial cytochrome b gene was sequenced of 102 individuals sampled throughout the distribution range. In total, we found 26 different haplotypes defined by 28 polymorphic sites. Phylogenetic analyses indicated that the samples were divided into two major haplogroups corresponding to one western and one eastern clade. The divergence time between these major clades was estimated to be approximately one million years. An analysis of molecular variance showed that 40% of the total genetic variability was found within local populations, 12% among populations within regional groups and 48% among groups. An analysis of the demographic history of the populations suggested that major expansions have occurred in the Himalayan snowcock populations and these correlate mainly with the first and the second largest glaciations during the Pleistocene. In addition, the data indicate that there was a population expansion of the Tianshan population during the uplift of the Qinghai-Tibet Plateau, approximately 2 million years ago.


Ibis ◽  
2018 ◽  
Vol 160 (4) ◽  
pp. 855-869 ◽  
Author(s):  
Luzhang Ruan ◽  
Wei Xu ◽  
Yuqing Han ◽  
Chaoying Zhu ◽  
Bicai Guan ◽  
...  

2020 ◽  
Author(s):  
S.G. Olvera-Vazquez ◽  
C. Remoue ◽  
A. Venon ◽  
A. Rousselet ◽  
O. Grandcolas ◽  
...  

With frequent host shifts involving the colonization of new hosts across large geographical ranges, crop pests are good models for examining the mechanisms of rapid colonization. The microbial partners of pest insects may be involved or affected by colonization, which has been little studied so far. We investigated the demographic history of the rosy apple aphid, Dysaphis plantaginea, a major pest of the cultivated apple (Malus domestica) in Europe, North Africa and North America, as well as the diversity of its endosymbiotic bacterial community. We genotyped a comprehensive sample of 714 colonies from Europe, Morocco and the US using mitochondrial (CytB and CO1), bacterial (16s rRNA and TrnpB), and 30 microsatellite markers. We detected five populations spread across the US, Morocco, Western and Eastern Europe, and Spain. Populations showed weak genetic differentiation and high genetic diversity, except the Moroccan and the North American that are likely the result of recent colonization events. Coalescent-based inferences releaved high levels of gene flow among populations during the colonization, but did not allow determining the sequence of colonization of Europe, America and Morroco by D. plantaginea, likely because of the weak genetic differentiation and the occurrence of gene flow among populations. Finally, we found that D. plantaginea rarely hosts any other endosymbiotic bacteria than its obligate nutritional symbiont Buchnera aphidicola. This suggests that secondary endosymbionts did not play any role in the rapid spread of the rosy apple aphid. These findings have fundamental importance for understanding pest colonization processes and implications for sustainable pest control programs.


2019 ◽  
Vol 110 (7) ◽  
pp. 844-856 ◽  
Author(s):  
Chin-Hong Ng ◽  
Soon-Leong Lee ◽  
Lee-Hong Tnah ◽  
Kevin K S Ng ◽  
Chai-Ting Lee ◽  
...  

Abstract Southeast Asian rainforests at upper hill elevations are increasingly vulnerable to degradation because most lowland forest areas have been converted to different land uses. As such, understanding the genetics of upper hill species is becoming more crucial for their future management and conservation. Shorea platyclados is an important, widespread upper hill dipterocarp in Malaysia. To elucidate the genetic structure of S. platyclados and ultimately provide guidelines for a conservation strategy for this species, we carried out a comprehensive study of the genetic diversity and demographic history of S. platyclados. Twenty-seven populations of S. platyclados across its range in Malaysia were genotyped at 15 polymorphic microsatellite loci and sequenced at seven noncoding chloroplast DNA (cpDNA) regions. A total of 303 alleles were derived from the microsatellite loci, and 29 haplotypes were identified based on 2892 bp of concatenated cpDNA sequences. The populations showed moderately high genetic diversity (mean HE = 0.680 for microsatellite gene diversity and HT = 0.650 for total haplotype diversity) and low genetic differentiation (FST = 0.060). Bayesian clustering divided the studied populations into two groups corresponding to western and eastern Malaysia. Bottleneck analysis did not detect any recent bottleneck events. Extended Bayesian skyline analyses showed a model of constant size for the past population history of this species. Based on our findings, priority areas for in situ and ex situ conservation and a minimum population size are recommended for the sustainable utilization of S. platyclados.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lourdes Valdez ◽  
Guillermo D’Elía

Genetic information on species can inform decision making regarding conservation of biodiversity since the response of organisms to changing environments depend, in part, on their genetic makeup. Territories of central-southern Chile and Argentina have undergone a varying degree of impact during the Quaternary, where the response of local fauna and flora was rather species-specific. Here, we focus on the sigmodontine rodent Abrothrix hirta, distributed from 35° S in Chile and Argentina to northern Tierra del Fuego. Based on 119,226 transcriptome-derived SNP loci from 46 individuals of A. hirta, we described the geographic distribution of the genetic diversity of this species using a maximum likelihood tree, principal component and admixture analyses. We also addressed the demographic history of the main intraspecific lineages of A. hirta using GADMA. We found that A. hirta exhibited four allopatric intraspecific lineages. Three main genetic groups were identified by a Principal Component Analysis and by Ancestry analysis. The demographic history of A. hirta was characterized by recent population stability for populations at the northernmost part of the range, while southern populations experienced a recent population expansion.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5673 ◽  
Author(s):  
Tomomi Ogura ◽  
Hiromi Kayama Watanabe ◽  
Chong Chen ◽  
Takenori Sasaki ◽  
Shigeaki Kojima ◽  
...  

Background Gastropods of the genus Provanna are abundant and widely distributed in deep-sea chemosynthetic environments with seven extant species described in the northwestern Pacific. Methods We investigated the population history and connectivity of five Provanna species in the northwestern Pacific through population genetic analyses using partial sequences of the cytochrome c oxidase subunit I gene. Results We found that P. subglabra, the most abundant and genetically diverse species, is genetically segregated by depth. Among the five species, the three comparatively shallower species (P. lucida, P. kuroshimensis, P. glabra) had a more constant demographic history compared to the deeper species (P. subglabra, P.  clathrata). Discussion Environmental differences, especially depth, appears to have a role in the segregation of Provanna snails. The population of P. clathrata in the Irabu Knoll appears to have expanded after P. subglabra population. The remaining three species, P. lucida, P. kuroshimensis, and P. glabra, are only known from a single site each, all of which were shallower than 1,000 m. These data indicate that Provanna gastropods are vertically segregated, and that their population characteristics likely depend on hydrothermal activities.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Fan Jiang ◽  
Ruiyi Lin ◽  
Changyi Xiao ◽  
Tanghui Xie ◽  
Yaoxin Jiang ◽  
...  

Abstract Background The most prolific duck genetic resource in the world is located in Southeast/South Asia but little is known about the domestication and complex histories of these duck populations. Results Based on whole-genome resequencing data of 78 ducks (Anas platyrhynchos) and 31 published whole-genome duck sequences, we detected three geographic distinct genetic groups, including local Chinese, wild, and local Southeast/South Asian populations. We inferred the demographic history of these duck populations with different geographical distributions and found that the Chinese and Southeast/South Asian ducks shared similar demographic features. The Chinese domestic ducks experienced the strongest population bottleneck caused by domestication and the last glacial maximum (LGM) period, whereas the Chinese wild ducks experienced a relatively weak bottleneck caused by domestication only. Furthermore, the bottleneck was more severe in the local Southeast/South Asian populations than in the local Chinese populations, which resulted in a smaller effective population size for the former (7100–11,900). We show that extensive gene flow has occurred between the Southeast/South Asian and Chinese populations, and between the Southeast Asian and South Asian populations. Prolonged gene flow was detected between the Guangxi population from China and its neighboring Southeast/South Asian populations. In addition, based on multiple statistical approaches, we identified a genomic region that included three genes (PNPLA8, THAP5, and DNAJB9) on duck chromosome 1 with a high probability of gene flow between the Guangxi and Southeast/South Asian populations. Finally, we detected strong signatures of selection in genes that are involved in signaling pathways of the nervous system development (e.g., ADCYAP1R1 and PDC) and in genes that are associated with morphological traits such as cell growth (e.g., IGF1R). Conclusions Our findings provide valuable information for a better understanding of the domestication and demographic history of the duck, and of the gene flow between local duck populations from Southeast/South Asia and China.


2015 ◽  
Vol 35 (6) ◽  
pp. 793-803 ◽  
Author(s):  
Katsuyuki Hamasaki ◽  
Ayaka Sugimoto ◽  
Asuka Ojima ◽  
Chikako Iizuka ◽  
Mio Sugizaki ◽  
...  

Author(s):  
Diyendo Massilani ◽  
Laurits Skov ◽  
Mateja Hajdinjak ◽  
Byambaa Gunchinsuren ◽  
Damdinsuren Tseveendorj ◽  
...  

AbstractWe present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in North East Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry. These segments derive from the same Denisovan admixture event(s) that contributed to present-day mainland Asians but are distinct from the Denisovan DNA segments in present-day Papuans and Aboriginal Australians.


Sign in / Sign up

Export Citation Format

Share Document