scholarly journals Evidence for ephemeral ring species formation during the diversification history of western fence lizards ( Sceloporus occidentalis )

2021 ◽  
Author(s):  
Nassima M. Bouzid ◽  
James W. Archie ◽  
Roger A. Anderson ◽  
Jared A. Grummer ◽  
Adam D. Leaché
Author(s):  
Ricardo Pereira ◽  
Sonal Singhal

In 1859, Charles Darwin proposed that species are not fundamentally different from subspecies or the varieties from which they evolve. A century later, Dobzhansky (1958) suggested that many such lineages are ephemeral and are likely to revert differentiation through introgression (Fig. 1A); only a few evolve complete reproductive isolation and persist in sympatry. In this issue of Molecular Ecology, Bouzid et al. (2021) show how new analytical methods, when applied to genome data, allow us to more precisely determine whether or not species formation follows the paths outlined by Darwin and Dobzhansky (Fig. 1B). The authors study the diversification of the lizard Sceloporus occidentalis, finding a continuum of genetic interactions between the preservation of genetic identity to genetic merger, analogous to what is exemplified by ring species. In doing so, they teach us two tales on species formation: that lineages are fractal byproducts of evolutionary processes such as genetic drift and selection, and that lineages are often ephemeral and do not always progress into species. Studying ephemeral lineages like those in S. occidentalis allows us to capture divergence at its earliest stages, and potentially to determine the factors that allow lineages to remain distinct despite pervasive gene flow. These lineages thus serve as a natural laboratory to address long standing hypotheses on species formation.


Evolution ◽  
2016 ◽  
Vol 71 (2) ◽  
pp. 442-448 ◽  
Author(s):  
Ayana de Brito Martins ◽  
Marcus Aloizio Martinez de Aguiar

Author(s):  
Andrew G Hope ◽  
Ryan B Stephens ◽  
Sarah D Mueller ◽  
Vasyl V Tkach ◽  
John R Demboski

Abstract Speciation among many animals was rapid through the Pleistocene, impacted by climate and periodic isolation and reconnection. As such, species limits among often morphologically cryptic lineages may remain unresolved despite clear mitogenomic partitioning. Accumulating evidence from phylogeographical studies is revealing congruent regional differentiation of lineages across taxonomic groups that share ecological and evolutionary traits. Here, we analyse multiple DNA loci and morphology to resolve the geography and timeframe associated with evolutionary history of North American pygmy shrews (genus Sorex). We then assess lineage diversification among three co-distributed shrew complexes using phylogenetic and approximate Bayesian computation approaches to test a hypothesis of spatial congruence but temporal incongruence of species formation on a continental scale. Our results indicate consistency in regional lineage distributions, partial congruence of the sequence of divergence, and strong but not definitive support for temporal incongruence, suggesting that successive glacial cycles initiated the process of diversification repeatedly through the Pleistocene. Our results emphasize a continuing need for greater genomic coverage in comparative phylogeography, with persistent challenges. We recognize distinct eastern (Sorex hoyi Baird, 1857) and western (Sorex eximius Osgood, 1901) species of pygmy shrew based on available evidence, but discuss issues with taxonomic designations considering the continuum of speciation throughout the boreal biome.


2015 ◽  
Vol 24 (21) ◽  
pp. 5312-5314 ◽  
Author(s):  
Ricardo J. Pereira ◽  
David B. Wake

2005 ◽  
Vol 11 ◽  
pp. 15-44 ◽  
Author(s):  
Daniel R. Brooks ◽  
Kaila E. Folinsbee

Historical biogeography has recently experienced a significant advancement in three integrated areas. The first is the adoption of an ontology of complexity, replacing the traditional ontology of simplicity, or a priori parsimony; simple and elegant models of the biosphere are not sufficient for explaining the geographical context of the origin of species and their post-speciation movements, producing evolutionary radiations and complex multi-species biotas. The second is the development of a powerful method for producing area cladograms from complex data, especially cases of reticulated area relationships, without loss of information. That method, called Phylogenetic Analysis for Comparing trees (PACT), is described herein. The third element is the replacement of the model of maximum vicariance with the model called the Taxon Pulse hypothesis. PACT analysis of Hominoidea, Hyaenidae, and Proboscidea beginning in the Miocene, reveals that all three groups share a general episode of species formation in Africa in the early Miocene, followed by “out of Africa” expansion into Europe, Asia and North America, a second general episode of species formation in Asia in the mid-Miocene, followed by “out of Asia” expansion into Africa, Europe and North America. Finally, there were two additional “out of Africa” events during the late Miocene and into the Pliocene, the last one setting the stage for the emergence and spread ofHomo. In addition to these shared episodes of vicariance and dispersal, each group exhibits clade-specific within-area and peripheral isolates speciation events. The complex history of dispersal and speciation over largeareas exhibited by hominoids is part of a more general historyof biotic diversification by taxon pulses.


Sign in / Sign up

Export Citation Format

Share Document