Incursions of divergent genotypes, evolution of virulence and host jumps shape a continental clonal population of the stripe rust pathogen Puccinia striiformis

2021 ◽  
Author(s):  
Yi Ding ◽  
Will S. Cuddy ◽  
Colin R. Wellings ◽  
Peng Zhang ◽  
Tine Thach ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 957
Author(s):  
Parimal Sinha ◽  
Xianming Chen

Barberry (Berberis spp.) is an alternate host for both the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), and the stem rust pathogen, P. graminis f. sp. tritici (Pgt), infecting wheat. Infection risk was assessed to determine whether barberry could be infected by either of the pathogens in Asia and Southeastern Europe, known for recurring epidemics on wheat and the presence of barberry habitats. For assessing infection risk, mechanistic infection models were used to calculate infection indices for both pathogens on barberry following a modeling framework. In East Asia, Bhutan, China, and Nepal were found to have low risks of barberry infection by Pst but high risks by Pgt. In Central Asia, Azerbaijan, Iran, Kazakhstan, southern Russia, and Uzbekistan were identified to have low to high risks of barberry infection for both Pst and Pgt. In Northwest Asia, risk levels of both pathogens in Turkey and the Republic of Georgia were determined to be high to very high. In Southwest Asia, no or low risk was found. In Southeastern Europe, similar high or very high risks for both pathogens were noted for all countries. The potential risks of barberry infection by Pst and/or Pgt should provide guidelines for monitoring barberry infections and could be valuable for developing rust management programs in these regions. The framework used in this study may be useful to predict rust infection risk in other regions.


2013 ◽  
Vol 35 (3) ◽  
pp. 304-314 ◽  
Author(s):  
K. Kumar ◽  
M. D. Holtz ◽  
K. Xi ◽  
T. K. Turkington

2005 ◽  
Vol 95 (8) ◽  
pp. 884-889 ◽  
Author(s):  
Vihanga Pahalawatta ◽  
Xianming Chen

Most barley cultivars are resistant to stripe rust of wheat that is caused by Puccinia striiformis f. sp. tritici. The barley cv. Steptoe is susceptible to all identified races of P. striiformis f. sp. hordei (PSH), the barley stripe rust pathogen, but is resistant to most P. striiformis f. sp. tritici races. To determine inheritance of the Steptoe resistance to P. striiformis f. sp. tritici, a cross was made between Steptoe and Russell, a barley cultivar susceptible to some P. striiformis f. sp. tritici races and all tested P. striiformis f. sp. hordei races. Seedlings of parents and F1, BC1, F2, and F3 progeny from the barley cross were tested with P. striiformis f. sp. tritici races PST-41 and PST-45 under controlled greenhouse conditions. Genetic analyses of infection type data showed that Steptoe had one dominant gene and one recessive gene (provisionally designated as RpstS1 and rpstS2, respectively) for resistance to races PST-41 and PST-45. Genomic DNA was extracted from the parents and 150 F2 plants that were tested for rust reaction and grown for seed of F3 lines. The infection type data and polymorphic markers identified using the resistance gene analog polymorphism (RGAP) technique were analyzed with the Mapmaker computer program to map the resistance genes. The dominant resistance gene in Steptoe for resistance to P. striiformis f. sp. tritici races was mapped on barley chromosome 4H using a linked microsatellite marker, HVM68. A linkage group for the dominant gene was constructed with 12 RGAP markers and the microsatellite marker. The results show that resistance in barley to the wheat stripe rust pathogen is qualitatively inherited. These genes might provide useful resistance against wheat stripe rust when introgressed into wheat from barley.


2009 ◽  
Vol 37 (2) ◽  
pp. 1045-1052 ◽  
Author(s):  
Bo Liu ◽  
Xiaodan Xue ◽  
Suping Cui ◽  
Xiaoyu Zhang ◽  
Qingmei Han ◽  
...  

2013 ◽  
Vol 103 (9) ◽  
pp. 927-934 ◽  
Author(s):  
Jie Zhao ◽  
Long Wang ◽  
Zhiyan Wang ◽  
Xianming Chen ◽  
Hongchang Zhang ◽  
...  

The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) population in China has been reported to be a distinct genetic group with higher diversity than those in many other countries. Genetic recombination in the P. striiformis f. sp. tritici population has been identified with molecular markers but whether sexual reproduction occurs in China is unknown. In this study, we surveyed barberry plants for infection by rust fungi in the stripe rust “hotspot” regions in Gansu, Sichuan, and Shaanxi provinces; collected barberry plants and inoculated plants of 20 Berberis spp. with germinated teliospores under controlled greenhouse conditions for susceptibility to P. striiformis f. sp. tritici; and tested P. striiformis f. sp. tritici isolates obtained from aecia on naturally infected barberry plants on the wheat genotypes used to differentiate Chinese P. striiformis f. sp. tritici races to determine virulence variations. Different Berberis spp. were widely distributed and most surveyed plants had pycnia and aecia of rust fungi throughout the surveyed regions. In total, 28 Berberis spp. were identified during our study. From 20 Berberis spp. tested with teliospores of P. striiformis f. sp. tritici from wheat plants, 18 species were susceptible under greenhouse conditions. Among 3,703 aecia sampled from barberry plants of three species (Berberis shensiana, B. brachypoda, and B. soulieana) under natural infections in Gansu and Shaanxi provinces, four produced P. striiformis f. sp. tritici uredinia on susceptible wheat ‘Mingxian 169’. Sequence of the internal transcribed spacer (ITS) regions of the four isolates from barberry shared 99% identity with the P. striiformis f. sp. tritici sequences in the National Center for Biotechnology Information database. The four isolates had virulence patterns different from all previously reported races collected from wheat plants. Furthermore, 82 single-uredinium isolates obtained from the four barberry isolates had high virulence diversity rates of 9.0 to 28.1%, indicating that the diverse isolates were produced through sexual reproduction on barberry plants under natural conditions. In addition to P. striiformis f. sp. tritici, sequence analysis of polymerase chain reaction products of the ITS regions and inoculation tests on wheat identified P. graminis (the stem rust pathogen). Our results indicated that P. striiformis f. sp. tritici can infect some Berberis spp. under natural conditions, and the sexual cycle of the fungus may contribute to the diversity of P. striiformis f. sp. tritici in China.


2005 ◽  
Vol 6 (1) ◽  
pp. 32 ◽  
Author(s):  
Ann R. Blount ◽  
Shabbir A. Rizvi ◽  
Ronald D. Barnett ◽  
Xianming Chen ◽  
Timothy S. Schubert ◽  
...  

The wheat stripe rust pathogen occured on several experimental wheat lines planted at Quincy, FL in early February 2003. Several experimental lines in the 2003 Advanced Wheat A, the Advanced Wheat B, and the Uniform Southern Wheat Nursery yield trials then showed traces of stripe rust on the leaves of the plants. An unusually cool and wet winter and spring encouraged a scattered outbreak of stripe rust of wheat on susceptible experimental lines of wheat. This report constitutes the first documented case of stripe rust of wheat in Florida. Accepted for publication 22 February 2005. Published 4 March 2005.


Sign in / Sign up

Export Citation Format

Share Document