rust pathogen
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 57)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaojie Zhao ◽  
Weishuai Bi ◽  
Shuqing Zhao ◽  
Jun Su ◽  
Mengyu Li ◽  
...  

Plant apoplast serves as the frontier battlefield of plant defense in response to different types of pathogens. Many pathogenesis-related (PR) proteins are accumulated in apoplastic space during the onset of plant–pathogen interaction, where they act to suppress pathogen infection. In this study, we found the expression of Triticum aestivum lipid transfer protein 3 (TaLTP3) gene was unregulated during incompatible interaction mediated by leaf rust resistance genes Lr39/41 at the early infection stage. Stable transgenic wheat lines overexpressing TaLTP3 exhibited enhanced resistance to leaf rust pathogen Puccinia triticina. Transcriptome analysis revealed that overexpression of TaLTP3 specifically activated the transcription of pathogenesis-related protein 1a (TaPR1a) and multiple plant hormone pathways, including salicylic acid (SA), jasmonic acid (JA), and auxin, in response to the infection of the model bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Further investigation indicated that TaLTP3 physically associated with wheat TaPR1a protein in the apoplast. Transgenic wheat lines overexpressing TaLTP3 and TaPR1a showed higher accumulations of reactive oxygen species (ROS) during plant defense responses. All these findings suggested that TaLTP3 is involved in wheat resistance against leaf rust pathogen infection and forming a TaLTP3-TaPR1a complex in apoplast against this pathogen, which provides new insights into the functional roles of PR proteins.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vanessa Bueno-Sancho ◽  
Elizabeth S. Orton ◽  
Morgan Gerrity ◽  
Clare M. Lewis ◽  
Phoebe Davey ◽  
...  

AbstractFungi have evolved an array of spore discharge and dispersal processes. Here, we developed a theoretical model that explains the ejection mechanics of aeciospore liberation in the stem rust pathogen Puccinia graminis. Aeciospores are released from cluster cups formed on its Berberis host, spreading early-season inoculum into neighboring small-grain crops. Our model illustrates that during dew or rainfall, changes in aeciospore turgidity exerts substantial force on neighboring aeciospores in cluster cups whilst gaps between spores become perfused with water. This perfusion coats aeciospores with a lubrication film that facilitates expulsion, with single aeciospores reaching speeds of 0.053 to 0.754 m·s−1. We also used aeciospore source strength estimates to simulate the aeciospore dispersal gradient and incorporated this into a publicly available web interface. This aids farmers and legislators to assess current local risk of dispersal and facilitates development of sophisticated epidemiological models to potentially curtail stem rust epidemics originating on Berberis.


2021 ◽  
Vol 182 (3) ◽  
pp. 125-136
Author(s):  
A. G. Khakimova ◽  
E. I. Gultyaeva ◽  
O. P. Mitrofanova

Background. One of the promising sources for enrichment of the common wheat (Triticum aestivum L.) gene pool with new alleles is synthetic hexaploid wheat (SHW), or allopolyploids from crossing tetraploid wheats (2n = 4x = 28, BBAA) with accessions of Aegilops tauschii Coss. (2n = 2x = 14, DD), and subsequent doubling of the chromosome number in the hybrids. Objectives of the study were to evaluate the SHW accessions from the VIR collection for resistance to Puccinia triticina Erikss. populations collected in Russia; genotype the accessions; and summarize information from the published sources concerning the resistance of the studied accessions to other harmful diseases and pests.Materials and methods. Resistance of 36 SHW accessions from the VIR collection to the populations of P. triticina was assessed in the laboratory and in the field, under artificial infection pressure, using the techniques developed by the Institute of Plant Protection. A phytopathological test and PCR markers were used to identify the Lr genes.Results and conclusion. The SHW accessions were characterized according to their resistance to the Russian populations of the wheat leaf rust pathogen. The sources of resistance in the phase of emergence and in adult plants were identified. The phytopathological test isolated three accessions with Lr23; the PCR marker of Lr21=Lr40 was found in 11 accessions, Lr39=Lr41 in 19, and Lr22a in 3. At the same time, k-65496, k-65515 and k-65517 had si multaneously Lr21=Lr40 and Lr39=Lr41, while k-65497, k-65503 and k-65508 had Lr22a and Lr39=Lr41. The analysis of published data showed that many of the studied SHW accessions were also resistant to other harmful diseases and insect pests, so they are of interest for further studying and possible use in domestic breeding.


2021 ◽  
pp. 23-27
Author(s):  
Elmira Aleksandrovna Konkova

Stem rust (pathogen - biotrophic fungus Puccinia graminis f. sp. tritici Erikss. & Henning) – a particularly deleterious disease of bread wheat. In this article the results of the analysis of the structure of samples of Saratov populations of wheat stem rust pathogen by signs of virulence during 2016-2020 were presented. A total of 60 pathogen isolates were characterized for virulence. In general, Saratov P. graminis populations were characterized as highly virulent during the study period. The significant variation in the virulence frequencies of P. graminis was observed in lines with the genes Sr9b, Sr9g, Sr12, Sr21, Sr25, Sr27, Sr30, Sr32, Sr33, Sr7a+12, Sr17+13. The other Sr lines used in the analysis, the virulence rates remained consistently high in all the years of research. Genes and combinations of genes: SrSatu, Sr24, Sr25+9g, Sr25+31, Sr25+38 were shown to be effective to P. graminis populations in 2016-2020.


Author(s):  
Hafiz Ghulam Muhu-Din Ahmed ◽  
Muhammad Nouman Iqbal ◽  
Muhammad Arslan Iqbal ◽  
Yawen Zeng ◽  
Aziz Ullah ◽  
...  

2021 ◽  
Vol 12 (5) ◽  
pp. 393-401
Author(s):  
Chinmaya Kumar Das ◽  
◽  
Umasankar Nayak ◽  
Preetinanda Pati ◽  
Mihir Ranjan Mohanty ◽  
...  

In this investigation, a three-dimensional model of a R-gene encoded product BjuWRR1 which is known to play a role in white rust resistance in Brassica juncea was developed to synthesize innovative ways for evolving white rust resistant cultivars. The model was built from the amino acid sequence of BjuWRR1 using structural template information of a disease resistance protein (RPP13-like protein 4 of Arabidopsis thaliana) with the help of homology-based modelling approach. Built models were validated for their stereochemical parameters and structural descriptors using Ramachandran plot analysis, protein structure analysis and ERRAT analysis. Structural analysis of BjuWRR1 model revealed that it is composed of three distinct domains namely a coiled-coil domain, a central NB-ARC nucleotide binding domain and a hypervariable leucine-rich repeat domain. Further, canonical conserved motifs such as P-loop, Kinase2-motif and HD-motif were found in the NB-ARC domain. The built model would help in understanding the molecular basis of plant-immunity against white rust pathogen by understanding the significance of inter-domain interactions in BuWRR1 in triggering the activation of downstream defense response against the white rust pathogen by promoting oligomerization of coiled-coil domains through stabilized hydrophobic interactions and interaction with NB-ARC domain. Presence of patches of charged residues in each domain of BjuWRR1 indicated their possible role in intra-molecular interaction with other domains. Therefore, this model can help in designing functional genomic studies to understand the role of intra-molecular interaction in BjuWRR1 to mediate resistance against white rust pathogen.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Qin Wu ◽  
Long Song ◽  
Yi Ding ◽  
Chongmei Dong ◽  
Mafruha Hasan ◽  
...  

Despite the global economic importance of the wheat leaf rust pathogen Puccinia triticina (Pt), genomic resources for Pt are limited and chromosome-level assemblies of Pt are lacking. Here, we present a complete haplotype-resolved genome assembly at a chromosome-scale for Pt using the Australian pathotype 64-(6),(7),(10),11 (Pt64; North American race LBBQB) built upon the newly developed technologies of PacBio and Hi-C sequencing. PacBio reads with ∼200-fold coverage (29.8 Gb data) were assembled by Falcon and Falcon-unzip and subsequently scaffolded with Hi-C data using Falcon-phase and Proximo. This approach allowed us to construct 18 chromosome pseudomolecules ranging from 3.5 to 12.3 Mb in size for each haplotype of the dikaryotic genome of Pt64. Each haplotype had a total length of ∼147 Mb, scaffold N50 of ∼9.4 Mb, and was ∼93% complete for BUSCOs. Each haplotype had ∼29,800 predicted genes, of which ∼2,000 were predicted as secreted proteins (SPs). The investigation of structural variants (SVs) between haplotypes A and B revealed that 10% of the total genome was spanned by SVs, highlighting variations previously undetected by short-read based assemblies. For the first time, the mating type (MAT) genes on each haplotype of Pt64 were identified, which showed that MAT loci a and b are located on two chromosomes (chromosomes 7 and 14), representing a tetrapolar type. Furthermore, the Pt64 assembly enabled haplotype-based evolutionary analyses for 21 Australian Pt isolates, which highlighted the importance of a haplotype resolved reference when inferring genetic relationships using whole genome SNPs. This Pt64 assembly at chromosome-scale with full phase information provides an invaluable resource for genomic and evolutionary research, which will accelerate the understanding of molecular mechanisms underlying Pt-wheat interactions and facilitate the development of durable resistance to leaf rust in wheat and sustainable control of rust disease.


Sign in / Sign up

Export Citation Format

Share Document