scholarly journals DNA‐metabarcoding reveals the importance of gelatinous zooplankton in the diet of Pandalus borealis , a keystone species in the Arctic

2021 ◽  
Author(s):  
Paulina Urban ◽  
Kim Præbel ◽  
Shripathi Bhat ◽  
Jan Dierking ◽  
Owen S. Wangensteen
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


Ecosystems ◽  
2021 ◽  
Author(s):  
Maartje Oostdijk ◽  
Erla Sturludóttir ◽  
Maria J. Santos

AbstractThe Arctic may be particularly vulnerable to the consequences of both ocean acidification (OA) and global warming, given the faster pace of these processes in comparison with global average speeds. Here, we use the Atlantis ecosystem model to assess how the trophic network of marine fishes and invertebrates in the Icelandic waters is responding to the combined pressures of OA and warming. We develop an approach where we first identify species by their economic (catch value), social (number of participants in fisheries), or ecological (keystone species) importance. We then use literature-determined ranges of sensitivity to OA and warming for different species and functional groups in the Icelandic waters to parametrize model runs for different scenarios of warming and OA. We found divergent species responses to warming and acidification levels; (mainly) planktonic groups and forage fish benefited while (mainly) benthic groups and predatory fish decreased under warming and acidification scenarios. Assuming conservative harvest rates for the largest catch-value species, Atlantic cod, we see that the population is projected to remain stable under even the harshest acidification and warming scenario. Further, for the scenarios where the model projects reductions in biomass of Atlantic cod, other species in the ecosystem increase, likely due to a reduction in competition and predation. These results highlight the interdependencies of multiple global change drivers and their cascading effects on trophic organization, and the continued high abundance of an important species from a socio-economic perspective in the Icelandic fisheries.


Polar Biology ◽  
2004 ◽  
Vol 28 (3) ◽  
pp. 207-217 ◽  
Author(s):  
K. A. Raskoff ◽  
J. E. Purcell ◽  
R. R. Hopcroft

Author(s):  
Agneta Hansen ◽  
Jon-Ivar Westgaard ◽  
Guldborg Søvik ◽  
Tanja Hanebrekke ◽  
Einar Magnus Nilssen ◽  
...  

Abstract Many marine organisms have a permanent presence both inshore and offshore and spawn in multiple areas, yet their status as separate populations or stocks remain unclear. This is the situation for the northern shrimp (Pandalus borealis) around the Arctic Ocean, which in northern Norway represents an important income for a small-scale coastal fishery and a large-vessel offshore fleet. In Norwegian waters, we uncovered two distinct genetic clusters, viz. a Norwegian coastal and a Barents Sea cluster. Shrimps with a mixed heritage from the Norwegian coastal and the Barents Sea clusters, and genetically different from both, inhabit the fjords at the northernmost coast (Finnmark). Genetic structure between fjords did not display any general trend, and only the Varangerfjord in eastern Finnmark displayed significant genetic structure within the fjord. Shrimps in the Finnmark fjords differed in some degree from shrimps both in the adjacent Barents Sea and along the rest of the coast and should probably be considered a separate management unit.


2020 ◽  
Vol 82 (4) ◽  
Author(s):  
Hanna-Kaisa Lakka ◽  
Antti P. Eloranta ◽  
Trygve Hesthagen ◽  
Randi Saksgård ◽  
Michael Power

Abstract Lepidurus arcticus (the Arctic tadpole shrimp) is a vulnerable keystone species in Arctic and alpine water bodies where its occurrence and population size may influence the viability and life history traits of resident salmonids. Using data from a Norwegian mountain hydropower reservoir, Aursjoen, we illustrate how reduced availability of L. arcticus as prey resulted in the reduced condition, growth and delayed maturation of resident brown trout (Salmo trutta). We further link changes in the relative abundance of L. arcticus as prey to changing reservoir conditions, e.g. water level changes in the spring period, thereby establishing an indirect link between reservoir operation regimes and brown trout population traits. While no evidence for decreased brown trout survival was found, the results indicate that alternative brown trout prey resources, i.e. the small chydorid cladoceran Eurycercus lamellatus, do not appear to have successfully offset the caloric loss from reduced consumption of large-sized L. arcticus. Although the fundamental explanation for the observed L. arcticus collapse remains largely unknown, the present findings provide strong evidence that this vulnerable crustacean species can affect the abundance, viability and life history traits of valued resident salmonid populations in oligotrophic alpine lakes and reservoirs exposed to climate- and hydropower-driven changes in water levels and temperature.


2015 ◽  
Vol 11 (11) ◽  
pp. 20150803 ◽  
Author(s):  
Charmain D. Hamilton ◽  
Christian Lydersen ◽  
Rolf A. Ims ◽  
Kit M. Kovacs

Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal ( Pusa hispida ), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a ‘tipping point’, subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species.


Author(s):  
Mark C. Serreze ◽  
Roger G. Barry

Sign in / Sign up

Export Citation Format

Share Document