scholarly journals Investigation of the diversity of effector genes in the banana pathogen, Fusarium oxysporum f. sp. cubense , reveals evidence of horizontal gene transfer

2017 ◽  
Vol 19 (5) ◽  
pp. 1155-1171 ◽  
Author(s):  
Elizabeth Czislowski ◽  
Sam Fraser-Smith ◽  
Manuel Zander ◽  
Wayne T. O'Neill ◽  
Rachel A. Meldrum ◽  
...  
2017 ◽  
Author(s):  
Jacob Thomas ◽  
Samit S. Watve ◽  
William C. Ratcliff ◽  
Brian K. Hammer

AbstractHorizontal gene transfer can have profound effects on bacterial evolution by allowing individuals to rapidly acquire adaptive traits that shape their strategies for competition. One strategy for intermicrobial antagonism often used by Proteobacteria is the genetically-encoded contact-dependent Type VI secretion system (T6SS); a weapon used to kill heteroclonal neighbors by direct injection of toxic effectors. Here, we experimentally demonstrate thatVibrio choleraecan acquire new T6SS effector genes via horizontal transfer and utilize them to kill neighboring cells. Replacement of one or more parental alleles with novel effectors allows the recombinant strain to dramatically outcompete its parent. Through spatially-explicit simulation modeling, we show that the HGT is risky: transformation brings a cell into conflict with its former clonemates, but can be adaptive when superior T6SS alleles are acquired. More generally, we find that these costs and benefits are not symmetric, and that high rates of HGT can act as hedge against competitors with unpredictable T6SS efficacy. We conclude that antagonism and horizontal transfer drive successive rounds of weapons-optimization and selective sweeps, dynamically shaping the composition of microbial communities.


Author(s):  
Marco Tulio Solano De la Cruz ◽  
Esteban Elías Elías Escobar – Hernández ◽  
Jorge Arturo Arciniega – González ◽  
Rocío del Pilar Rueda – Zozaya ◽  
Jacel Adame – García ◽  
...  

Members of the Fusarium oxysporum species complex (FOSC) has the capacity to specialize into host-specific pathogens known as formae speciales through horizontal gene transfer between pathogenic and endophytic individuals. To this day, the origin of these formae speciales and the genetic determinants dictating the switch from endophytic to pathogenic Fusarium oxysporum (Fox) are still unknown. F. oxysporum f. sp. vanillae (Fov), member of FOSC, is the causal agent of root and stem rot disease, representing the main phytosanitary problem in vanilla plantations worldwide. Here we analyzed the RNA-seq libraries resulting from the interaction vanilla-Fov at early and late stages of the infection, and what we initially identified as control in a previous study, detecting the presence of Fox endophytes. We identified virulence, hypervirulence, sporulation, conidiation, necrosis, and production of fusaric acid as key processes taking place during Fov-vanilla interaction. Through comparison with endophytic Fox, we found that Fov can infect vanilla thanks to the presence of pathogenicity islands and genomic regions associated with supernumerary chromosomes. These play a central role as carriers of genes involved with pathogenic activity and could have being obtained by Fov through horizontal gene transfer. We also found that, unlike other pathogenic members of FOSC, Fov do not use Secreted in Xylem proteins (SIX) to infect vanilla.


Sign in / Sign up

Export Citation Format

Share Document