type vi secretion
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 236)

H-INDEX

78
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Siu Lung Ng ◽  
Sophia A. Kammann ◽  
Gabi Steinbach ◽  
Tobias Hoffmann ◽  
Peter J. Yunker ◽  
...  

Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes to new niches. Regulatory architecture is often inferred from transcription factor identification and genome analysis using purely computational approaches. However, there are few examples of phenotypic divergence that arise from the rewiring of bacterial regulatory circuity by mutations in intergenic regions, because locating regulatory elements within regions of DNA that do not code for protein requires genomic and experimental data. We identify a single cis-acting single nucleotide polymorphism (SNP) dramatically alters control of the type VI secretion system (T6), a common weapon for inter-bacterial competition. Tight T6 regulatory control is necessary for adaptation of the waterborne pathogen Vibrio cholerae to in vivo conditions within the human gut, which we show can be altered by this single non-coding SNP that results in constitutive expression in vitro. Our results support a model of pathogen evolution through cis-regulatory mutation and preexisting, active transcription factors, thus conferring different fitness advantages to tightly regulated strains inside a human host and unfettered strains adapted to environmental niches.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010182
Author(s):  
Patrick Günther ◽  
Dennis Quentin ◽  
Shehryar Ahmad ◽  
Kartik Sachar ◽  
Christos Gatsogiannis ◽  
...  

The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise β-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs ‘cocoon’ where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal ‘plug’ domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jin Li ◽  
Wei-wei Hu ◽  
Guo-xin Qu ◽  
Xiao-rong Li ◽  
Yi Xiang ◽  
...  

Burkholderia thailandensis is a clinically underestimated conditional pathogen in the genus Burkholderia, the pathogenicity of the infection caused by B. thailandensis remains poorly understood. According to previous studies, Type-VI secretion system (T6SS) is a protein secreting device widely existing in Gram-negative bacilli. Valine-glycine repeat protein G (VgrG) is not only an important component of T6SS, but also a virulence factor of many Gram-negative bacilli. In one of our previous studies, a unique T6SS vgrG gene (vgrG2 gene) was present in a virulent B. thailandensis strain BPM (BPM), but not in the relatively avirulent B. thailandensis strain E264 (E264). Meanwhile, transcriptome analysis of BPM and E264 showed that the vgrG2 gene was strongly expressed in BPM, but not in E264. Therefore, we identified the function of the vgrG2 gene by constructing the mutant and complemented strains in this study. In vitro, the vgrG2 gene was observed to be involved in the interactions with host cells. The animal model experiment showed that the deletion of vgrG2 gene significantly led to the decrease in the lethality of BPM and impaired its ability to trigger host immune response. In conclusion, our study provides a new perspective for studying the pathogenicity of B. thailandensis and lays the foundation for discovering the potential T6SS effectors.


Author(s):  
Ameeq Ul Mushtaq ◽  
Jörgen Ådén ◽  
Athar Alam ◽  
Anders Sjöstedt ◽  
Gerhard Gröbner

AbstractThe Hsp100 family member ClpB is a protein disaggregase which solubilizes and reactivates stress-induced protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. In the pathogenic bacterium Francisella tularensis, ClpB is involved in type VI secretion system (T6SS) disassembly through depolymerization of the IglA-IglB sheath. This leads to recycling and reassembly of T6SS components and this process is essential for the virulence of the bacterium. Here we report the backbone chemical shift assignments and 15N relaxation-based backbone dynamics of the N-terminal substrate-binding domain of ClpB (1-156).


2021 ◽  
Author(s):  
Lubov I Chernogor ◽  
Marina G. Eliseikina ◽  
Ivan S Petrushin ◽  
Ekaterina A Chernogor ◽  
Igor V Khanaev ◽  
...  

Sponges (phylum Porifera) are ancient, multicellular metazoans. Freshwater sponges (Demosponges, Lubomirskiidae) dominate the fauna of the littoral zone of Lake Baikal. Over the last years, there have been mass diseases and death of endemic sponges. Previously, the strain Janthinobacterium sp. SLB01 was isolated from the diseased sponge Lubomirskia baicalensis. The studies of the pathogenicity of the strain Janthinobacterium sp. SLB01 for Baikal sponges has not been carried out, therefore we infected experimentally in vitro to determine its pathogenicity by the cell culture of the primmorphs with subsequent isolation, sequencing, and analysis of the genomes. The purpose of the study is to show that the strain Janthinobacterium sp. SLB01 isolated from the diseased sponge L. baicalensis is a pathogen for the cell culture of primmorphs. The bacteria from the infected samples were isolated and identified as strain Janthinobacterium sp. PLB02. A comparative analysis of the genomes of the strains showed that they are practically identical. The genomes of both strains contain genes vioABCDE violacein, flok formation, and strong biofilm, and the type VI secretion system (T6SS), as the primary virulence factor. These bacterial strains based on a comparison of complete genomes showed similarity with strain Janthinobacterium lividum MTR. Isolated strains of Janthinobacterium sp. are pathogens for cell cultures of primmorphs and L. baicalensis sponges. The results of the study will help to expand the understanding of microbial relationships in the development of disease and the death of Baikal sponges.


2021 ◽  
Vol 43 (3) ◽  
pp. 2220-2237
Author(s):  
Sergei I. Belikov ◽  
Ivan S. Petrushin ◽  
Lubov I. Chernogor

The strain Janthinobacterium sp. SLB01 was isolated from the diseased freshwater sponge Lubomirskia baicalensis (Pallas, 1776) and the draft genome was published previously. The aim of this work is to analyze the genome of the Janthinobacterium sp. SLB01 to search for pathogenicity factors for Baikal sponges. We performed genomic analysis to determine virulence factors, comparing the genome of the strain SLB01 with genomes of other related J. lividum strains from the environment. The strain Janthinobacterium sp. SLB01 contained genes encoding violacein, alpha-amylases, phospholipases, chitinases, collagenases, hemolysin, and a type VI secretion system. In addition, the presence of conservative clusters of genes for the biosynthesis of secondary metabolites of tropodithietic acid and marinocine was found. We present genes for antibiotic resistance, including five genes encoding various lactamases and eight genes for penicillin-binding proteins, which are conserved in all analyzed strains. Major differences were found between the Janthinobacterium sp. SLB01 and J. lividum strains in the spectra of genes for glycosyltransferases and glycoside hydrolases, serine hydrolases, and trypsin-like peptidase, as well as some TonB-dependent siderophore receptors. Thus, the study of the analysis of the genome of the strain SLB01 allows us to conclude that the strain may be one of the pathogens of freshwater sponges.


mSystems ◽  
2021 ◽  
Author(s):  
Hao-Yu Zheng ◽  
Liang Yang ◽  
Tao Dong

The type VI secretion system (T6SS) belongs to the evolutionarily related group of contractile injection systems that employ a contractile outer sheath to inject a rigid spear-like inner tube into target bacterial and eukaryotic cells. The tip of the rigid tube is often decorated by a PAAR-repeat protein as a key structural component.


2021 ◽  
Author(s):  
Andrea Carobbi ◽  
Simone Di Nepi ◽  
Chaya M. Fridman ◽  
Yasmin Dar ◽  
Rotem Ben-Yaakov ◽  
...  

ABSTRACTThe type VI secretion system (T6SS) is deployed by numerous Gram-negative bacteria to deliver toxic effectors into neighboring cells. The genome of Pantoea agglomerans pv. betae (Pab) phytopathogenic bacteria contains a gene cluster (T6SS1) predicted to encode a complete T6SS. Using secretion and competition assays, we found that T6SS1 in Pab is a functional antibacterial system that allows this pathogen to outcompete rival plant-associated bacteria found in its natural environment. Computational analysis of the T6SS1 gene cluster revealed that antibacterial effector and immunity proteins are encoded within three dynamic genomic islands that harbor arrays of orphan immunity genes or toxin and immunity cassettes. Functional analysis demonstrated that the specialized antibacterial effector VgrG contains a C-terminal catalytically active glucosaminidase domain that is used to degrade prey peptidoglycan. Moreover, we confirmed that a bicistronic unit at the end of the T6SS1 cluster encodes a novel antibacterial T6SS effector and immunity pair. Together, these results demonstrate that Pab T6SS1 is an antibacterial system delivering a lysozyme-like effector to eliminate competitors, and indicate that this bacterium contains novel T6SS effectors.Significance StatementIn this work, we describe the identification of a Pantoea agglomerans T6SS as an antibacterial determinant used by this phytopathogen to outcompete bacterial rivals. Furthermore, we provide an in-depth analysis of the T6SS gene cluster and the putative effector and immunity genes that comprise it, and we propose explanations for its dynamic evolution and effector diversification in Pantoea strains. Lastly, we experimentally validate two predicted effector and immunity pairs, and we demonstrate that one is a potent lysozyme-like toxin.


2021 ◽  
Author(s):  
Amaia González-Magaña ◽  
Jon Altuna ◽  
María Queralt-Martín ◽  
Eneko Largo ◽  
Itxaso Montánchez ◽  
...  

Abstract The Type VI Secretion System (T6SS) of Pseudomonas aeruginosa injects effector proteins into neighbouring competitors and host cells, providing a fitness advantage that allows this opportunistic nosocomial pathogen to persist and prevail during the onset of infections. However, despite the high clinical relevance of P. aeruginosa, the identity and mode of action of most P. aeruginosa T6SS-dependent effectors remain to be discovered. Here, we report the molecular mechanism of Tse5-CT, which is the toxic auto-proteolytic product of the P. aeruginosa T6SS exported effector Tse5. Our results demonstrate Tse5-CT is a pore-forming toxin that can transport ions across the membrane, causing membrane depolarisation and bacterial death. The membrane potential regulates a wide range of essential cellular functions, and therefore membrane depolarisation is an efficient strategy to compete with other microorganisms in polymicrobial environments.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010116
Author(s):  
Xiaoye Liang ◽  
Tong-Tong Pei ◽  
Hao Li ◽  
Hao-Yu Zheng ◽  
Han Luo ◽  
...  

The type VI secretion system (T6SS) is a spear-like nanomachine found in gram-negative pathogens for delivery of toxic effectors to neighboring bacterial and host cells. Its assembly requires a tip spike complex consisting of a VgrG-trimer, a PAAR protein, and the interacting effectors. However, how the spike controls T6SS assembly remains elusive. Here we investigated the role of three VgrG-effector pairs in Aeromonas dhakensis strain SSU, a clinical isolate with a constitutively active T6SS. By swapping VgrG tail sequences, we demonstrate that the C-terminal ~30 amino-acid tail dictates effector specificity. Double deletion of vgrG1&2 genes (VgrG3+) abolished T6SS secretion, which can be rescued by ectopically expressing chimeric VgrG3 with a VgrG1/2-tail but not the wild type VgrG3. In addition, deletion of effector-specific chaperones also severely impaired T6SS secretion, despite the presence of intact VgrG and effector proteins, in both SSU and Vibrio cholerae V52. We further show that SSU could deliver a V. cholerae effector VasX when expressing a plasmid-borne chimeric VgrG with VasX-specific VgrG tail and chaperone sequences. Pull-down analyses show that two SSU effectors, TseP and TseC, could interact with their cognate VgrGs, the baseplate protein TssK, and the key assembly chaperone TssA. Effectors TseL and VasX could interact with TssF, TssK and TssA in V. cholerae. Collectively, we demonstrate that chimeric VgrG-effector pairs could bypass the requirement of heterologous VgrG complex and propose that effector-stuffing inside the baseplate complex, facilitated by chaperones and the interaction with structural proteins, serves as a crucial structural determinant for T6SS assembly.


Sign in / Sign up

Export Citation Format

Share Document