scholarly journals An algorithm to derive the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (FAPARps) from eddy covariance flux tower data

2012 ◽  
Vol 197 (2) ◽  
pp. 511-523 ◽  
Author(s):  
Booker O. Ogutu ◽  
Jadunandan Dash
2008 ◽  
Vol 5 (2) ◽  
pp. 1765-1794 ◽  
Author(s):  
J. Connolly ◽  
N. T. Roulet ◽  
J. W. Seaquist ◽  
N. M. Holden ◽  
P. M. Lafleur ◽  
...  

Abstract. We used satellite remote sensing data; fraction of photosynthetically active radiation absorbed by vegetation (fPAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with tower eddy covariance and meteorological measurements to characterise the light use efficiency parameter (ε) variability and the maximum ε (εmax) for two contrasting Canadian peatlands. Eight-day MODIS fPAR data were acquired for the Mer Bleue (2000 to 2003) and Western Peatland (2004). Flux tower eddy covariance and meteorological measurements were integrated to the same eight-day time stamps as the MODIS fPAR data. A light use efficiency model: GPP=ε * APAR (where GPP is Gross Primary Productivity and APAR is absorbed photosynthetically active radiation) was used to calculated ε. The εmax value for each year (2000 to 2003) at the Mer Bleue bog ranged from 0.58 g C MJ−1 to 0.78 g C MJ−1 and was 0.91 g C MJ−1 in 2004, for the Western Peatland. The average growing season ε for the Mer Bleue bog for the four year period was 0.35 g C MJ−1 and for the Western Peatland in 2004 was 0.57 g C MJ−1. The average snow free period ε for the Mer Bleue bog over the four year period was 0.27 g C MJ−1 and for the Western Peatland in 2004 was 0.39 g C MJ−1. Using the light use efficiency method we calculated the εmax and the annual variability in ε for two Canadian peatlands. We determined that temperature was a growth-limiting factor at both sites Vapour Pressure Deficit (VPD) however was not. MODIS fPAR is a useful tool for the characterization of ε at flux tower sites.


2009 ◽  
Vol 6 (2) ◽  
pp. 225-234 ◽  
Author(s):  
J. Connolly ◽  
N. T. Roulet ◽  
J. W. Seaquist ◽  
N. M. Holden ◽  
P. M. Lafleur ◽  
...  

Abstract. We used satellite remote sensing data; fraction of photosynthetically active radiation absorbed by vegetation (fPAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with tower eddy covariance and meteorological measurements to characterise the Light Use Efficiency parameter (ε) variability and the maximum ε (εmax) for two contrasting Canadian peatlands. Eight-day MODIS fPAR data were acquired for the Mer Bleue (2000 to 2003) and Western Peatland (2004). Flux tower eddy covariance and meteorological measurements were integrated to the same eight-day time stamps as the MODIS fPAR data. A light use efficiency model: GPP = ε×APAR (where GPP is Gross Primary Productivity and APAR is absorbed photosynthetically active radiation) was used to calculate ε. The εmax value for each year (2000 to 2003) at the Mer Bleue bog ranged from 0.58 g C MJ−1 to 0.78 g C MJ−1 and was 0.91 g C MJ−1 in 2004, for the Western Peatland. The average growing season ε for the Mer Bleue bog for the four year period was 0.35 g C MJ−1 and for the Western Peatland in 2004 was 0.57 g C MJ−1. The average snow free period for the Mer Bleue bog over the four years was 0.27 g C MJ−1 and for the Western Peatland in 2004 was 0.39 g C MJ−1. Using the light use efficiency method we calculated the εmax and the annual variability in ε for two Canadian peatlands. We determined that temperature was a growth-limiting factor at both sites Vapour Pressure Deficit (VPD) however was not. MODIS fPAR is a useful tool for the characterization of ε at flux tower sites.


2009 ◽  
Vol 6 (2) ◽  
pp. 251-266 ◽  
Author(s):  
S. A. Archibald ◽  
A. Kirton ◽  
M. R. van der Merwe ◽  
R. J. Scholes ◽  
C. A. Williams ◽  
...  

Abstract. Inter-annual variability in primary production and ecosystem respiration was explored using eddy-covariance data at a semi-arid savanna site in the Kruger Park, South Africa. New methods of extrapolating night-time respiration to the entire day and filling gaps in eddy-covariance data in semi-arid systems were developed. Net ecosystem exchange (NEE) in these systems occurs as pulses associated with rainfall events, a pattern not well-represented in current standard gap-filling procedures developed primarily for temperate flux sites. They furthermore do not take into account the decrease in respiration at high soil temperatures. An artificial neural network (ANN) model incorporating these features predicted measured fluxes accurately (MAE 0.42 gC/m2/day), and was able to represent the seasonal patterns of photosynthesis and respiration at the site. The amount of green leaf area (indexed using satellite-derived estimates of fractional interception of photosynthetically active radiation fAPAR), and the timing and magnitude of rainfall events, were the two most important predictors used in the ANN model. These drivers were also identified by multiple linear regressions (MLR), with strong interactive effects. The annual integral of the filled NEE data was found to range from −138 to +155 g C/m2/y over the 5 year eddy covariance measurement period. When applied to a 25 year time series of meteorological data, the ANN model predicts an annual mean NEE of 75(±105) g C/m2/y. The main correlates of this inter-annual variability were found to be variation in the amount of absorbed photosynthetically active radiation (APAR), length of the growing season, and number of days in the year when moisture was available in the soil.


2008 ◽  
Vol 5 (4) ◽  
pp. 3221-3266 ◽  
Author(s):  
S. Archibald ◽  
A. Kirton ◽  
M. van der Merwe ◽  
R. J. Scholes ◽  
C. A. Williams ◽  
...  

Abstract. Inter-annual variability in primary production and ecosystem respiration was explored using eddy-covariance data at a semi-arid savanna site in the Kruger Park, South Africa. New methods of extrapolating night-time respiration to the entire day and filling gaps in eddy-covariance data in semi-arid systems were developed. Net ecosystem exchange (NEE) in these systems occurs as pulses associated with rainfall events, a pattern not well-represented in current standard gap-filling procedures developed primarily for temperate flux sites. They furthermore do not take into account the decrease in respiration at high soil temperatures. An artificial neural network (ANN) model incorporating these features predicted measured fluxes accurately (MAE 0.42 g C/m2/day), and was able to represent the seasonal patterns of photosynthesis and respiration at the site. The amount of green leaf area (indexed using satellite-derived estimates of fractional interception of photosynthetically active radiation fAPAR), and the timing and magnitude of rainfall events, were the two most important predictors used in the ANN model. These drivers were also identified by multiple linear models (MLR), with strong interactive effects. The annual integral of the filled NEE data was found to range from −138 to +155 g C/m2/y over the 5 year eddy covariance measurement period. When applied to a 25 year time series of meteorological data, the ANN model predicts an annual mean NEE of 75 (±105) g C/m2/y. The main correlates of this inter-annual variability were found to be variation in the amount of absorbed photosynthetically active radiation (APAR), length of the growing season, and number of days in the year when moisture was available in the soil.


2015 ◽  
Vol 12 (23) ◽  
pp. 19213-19267 ◽  
Author(s):  
N. Restrepo-Coupe ◽  
A. Huete ◽  
K. Davies ◽  
J. Cleverly ◽  
J. Beringer ◽  
...  

Abstract. A direct relationship between gross ecosystem productivity (GEP) measured by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of ecosystem photosynthetic activity (GEP) and potential (e.g. ecosystem light use efficiency and quantum yield) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite derived greenness products constitute a measurement of ecosystem structure (e.g. leaf area index – quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity – quality of leaves), rather than productivity. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature and/or precipitation) and relatively aseasonal vegetation photosynthetic potential ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). Eddy covariance data offer much more than validation and/or calibration of satellite data and models. Knowledge of the conditions in which flux tower measurements and VIs or other remote sensing products converge greatly advances our understanding of the mechanisms driving the carbon cycle (phenology and climate drivers) and provides an ecological basis for interpretation of satellite derived measures of greenness.


Nature Plants ◽  
2021 ◽  
Author(s):  
Shiji Hou ◽  
Thorsten Thiergart ◽  
Nathan Vannier ◽  
Fantin Mesny ◽  
Jörg Ziegler ◽  
...  

AbstractBidirectional root–shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota–root–shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth–defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 351
Author(s):  
Adolfo Rosati ◽  
Damiano Marchionni ◽  
Dario Mantovani ◽  
Luigi Ponti ◽  
Franco Famiani

We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading in lower-canopy layers, despite similar overall interception. Therefore, knowing overall PAR interception does not allow an understanding of differences in PAR distribution on the ground and within the canopy and their possible effects on canopy radiation use efficiency (RUE) and performance, between different architectural systems.


Sign in / Sign up

Export Citation Format

Share Document