flux tower
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 34)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Juwon Kong ◽  
Youngryel Ryu ◽  
Jiangong Liu ◽  
Benjamin Dechant ◽  
Camilo Rey-Sanchez ◽  
...  

Mapping canopy photosynthesis in both high spatial and temporal resolution is essential for carbon cycle monitoring in heterogeneous areas. However, well established satellites in sun-synchronous orbits such as Sentinel-2, Landsat and MODIS can only provide either high spatial or high temporal resolution but not both. Recently established CubeSat satellite constellations have created an opportunity to overcome this resolution trade-off. In particular, Planet Fusion allows full utilization of the CubeSat data resolution and coverage while maintaining high radiometric quality. In this study, we used the Planet Fusion surface reflectance product to calculate daily, 3-m resolution, gap-free maps of the near-infrared radiation reflected from vegetation (NIRvP). We then evaluated the performance of these NIRvP maps for estimating canopy photosynthesis by comparing with data from a flux tower network in Sacramento-San Joaquin Delta, California, USA. Overall, NIRvP maps captured temporal variations in canopy photosynthesis of individual sites, despite changes in water extent in the wetlands and frequent mowing in the crop fields. When combining data from all sites, however, we found that robust agreement between NIRvP maps and canopy photosynthesis could only be achieved when matching NIRvP maps to the flux tower footprints. In this case of matched footprints, NIRvP maps showed considerably better performance than in situ NIRvP in estimating canopy photosynthesis both for daily sum and data around the time of satellite overpass (R 2 = 0.78 vs. 0.60, for maps vs. in situ for the satellite overpass time case). This difference in performance was mostly due to the higher degree of consistency in slopes of NIRvP -canopy photosynthesis relationships across the study sites for flux tower footprint-matched maps. Our results show the importance of matching satellite observations to the flux tower footprint and demonstrate the potential of CubeSat constellation imagery to monitor canopy photosynthesis remotely at high spatio-temporal resolution.


2021 ◽  
Author(s):  
Gitanjali Thakur ◽  
Stan Schymanski ◽  
Ivonne Trebs ◽  
Mauro Suils ◽  
Kaniska Mallic

Land surface temperature (LST) is a preeminent state variable that controls the energy and water exchange between the Earth’s surface and the atmosphere. At the landscape-scale, LST is derived from thermal infrared radiance measured using space-borne radiometers. At the plot-scale, the flux tower recorded longwave radiation components are inverted to retrieve LST. Since the down-welling longwave component was not measured routinely until recently, usually only the up-welling longwave component is used for the plot-scale LST retrieval. However, we found that ignoring reflected down-welling longwave radiation for plot-scale LST estimations can lead to substantial error. This also has important implications for estimating the correct surface emissivity using flux tower measurements, which is needed for plot-scale LST retrievals. The present study proposes a new method for plot-scale emissivity and LST estimation and addresses in detail the consequences of omitting down-welling longwave radiation as frequently done in the literature. Our analysis uses ten eddy covariance sites with different land cover types and found that the LST values obtained using both up-welling and down-welling longwave radiation components are 0.5 to 1.5 K lower than estimates using only up-welling longwave radiation. Furthermore, the proposed method helps identify inconsistencies between plot-scale radiometric and aerodynamic measurements, likely due to footprint mismatch between measurement approaches. We also found that such inconsistencies can be removed by slight corrections to the up-welling longwave component and subsequent energy balance closure, resulting in realistic estimates of surface emissivity and consistent relationships between energy fluxes and surface-air temperature differences. Landscape-scale day-time LST obtained from satellite data (MODIS TERRA) was strongly correlated with our plot-scale estimates for most of the sites, but higher by several Kelvin at two sites. We also quantified the uncertainty in estimated LST and surface emissivity using the different methods and found that the proposed method does not result in increased uncertainty. The results of this work have significant implications for the combined use of aerodynamic and radiometric measurements to understand the interactions and feedbacks between LST and surface-atmosphere exchange processes.


2021 ◽  
Author(s):  
Gitanjali Thakur ◽  
Stanislaus J. Schymanski ◽  
Ivonne Trebs ◽  
Mauro Sulis ◽  
Kaniska Mallick

Abstract Land surface temperature (LST) is a preeminent state variable that controls the energy and water exchange between the Earth’s surface and the atmosphere. At the landscape-scale, LST is derived from thermal infrared radiance measured using space-borne radiometers. At the plot-scale, the flux tower recorded longwave radiation components are inverted to retrieve LST. Since the down-welling longwave component was not measured routinely until recently, usually only the up-welling longwave component is used for the plot-scale LST retrieval. However, we found that ignoring reflected down-welling longwave radiation for plot-scale LST estimations can lead to substantial error. This also has important implications for estimating the correct surface emissivity using flux tower measurements, which is needed for plot-scale LST retrievals. The present study proposes a new method for plot-scale emissivity and LST estimation and addresses in detail the consequences of omitting down-welling longwave radiation as frequently done in the literature. Our analysis uses ten eddy covariance sites with different land cover types and found that the LST values obtained using both up-welling and down-welling longwave radiation components are 0.5 to 1.5 K lower than estimates using only up-welling longwave radiation. Furthermore, the proposed method helps identify inconsistencies between plot-scale radiometric and aerodynamic measurements, likely due to footprint mismatch between measurement approaches. We also found that such inconsistencies can be removed by slight corrections to the up-welling longwave component and subsequent energy balance closure, resulting in realistic estimates of surface emissivity and consistent relationships between energy fluxes and surface-air temperature differences. Landscape-scale daytime LST obtained from satellite data (MODIS TERRA) was strongly correlated with our plot-scale estimates for most of the sites, but higher by several Kelvin at two sites. We also quantified the uncertainty in estimated LST and surface emissivity using the different methods and found that the proposed method does not result in increased uncertainty. The results of this work have significant implications for the combined use of aerodynamic and radiometric measurements to understand the interactions and feedbacks between LST and surface-atmosphere exchange processes.


2021 ◽  
Vol 311 ◽  
pp. 108653
Author(s):  
Sungsik Cho ◽  
Minseok Kang ◽  
Kazuhito Ichii ◽  
Joon Kim ◽  
Jong-Hwan Lim ◽  
...  

2021 ◽  
Author(s):  
Hamze Dokoohaki ◽  
Bailey D. Morrison ◽  
Ann Raiho ◽  
Shawn P. Serbin ◽  
Michael Dietze

Abstract. The ability to monitor, understand, and predict the dynamics of the terrestrial carbon cycle requires the capacity to robustly and coherently synthesize multiple streams of information that each provide partial information about different pools and fluxes. In this study, we introduce a new terrestrial carbon cycle data assimilation system, built on the PEcAn model-data eco-informatics system, and its application for the development of a proof-of-concept carbon "reanalysis" product that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. We first calibrated this system against plant trait and flux tower Net Ecosystem Exchange (NEE) using a novel emulated hierarchical Bayesian approach. Next, we extended the Tobit-Wishart Ensemble Filter (TWEnF) State Data Assimilation (SDA) framework, a generalization of the common Ensemble Kalman Filter which accounts for censored data and provides a fully Bayesian estimate of model process error, to a regional-scale system with a calibrated localization. Combined with additional workflows for propagating parameter, initial condition, and driver uncertainty, this represents the most complete and robust uncertainty accounting available for terrestrial carbon models. Our initial reanalysis was run on an irregular grid of ~500 points selected using a stratified sampling method to efficiently capture environmental heterogeneity. Remotely sensed observations of aboveground biomass (Landsat LandTrendr) and LAI (MODIS MOD15) were sequentially assimilated into the SIPNET model. Reanalysis soil carbon, which was indirectly constrained based on modeled covariances, showed general agreement with SoilGrids, an independent soil carbon data product. Reanalysis NEE, which was constrained based on posterior ensemble weights, also showed good agreement with eddy flux tower NEE and reduced RMSE compared to the calibrated forecast. Ultimately, PEcAn's carbon cycle reanalysis provides a scalable framework for harmonizing multiple data constraints and providing a uniform synthetic platform for carbon monitoring, reporting, and verification (MRV) and accelerating terrestrial carbon cycle research.


2021 ◽  
Author(s):  
Lei Huang ◽  
Tammo S. Steenhuis ◽  
Yong Luo ◽  
Qiuhong Tang ◽  
Ronglin Tang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Anna M. Ukkola ◽  
Gab Abramowitz ◽  
Martin G. De Kauwe

Abstract. Eddy covariance flux towers measure the exchange of water, energy and carbon fluxes between the land and atmosphere. They have become invaluable for theory development and evaluating land models. However, flux tower data as measured (even after site post-processing) are not directly suitable for land surface modelling due to data gaps in model forcing variables, inappropriate gap-filling, formatting and varying data quality. Here we present a quality-control and data-formatting pipeline for tower data from FLUXNET2015, La Thuile and OzFlux syntheses and the resultant 170-site globally distributed flux tower dataset specifically designed for use in land modelling. The dataset underpins the second phase of the PLUMBER land surface model benchmarking evaluation project, an international model intercomparison project encompassing > 20 land surface and biosphere models. The dataset is provided in the Assistance for Land-surface Modelling Activities (ALMA) NetCDF format and is CF-NetCDF compliant. For forcing land surface models, the dataset provides fully gap-filled meteorological data that has had periods of low data quality removed. Additional constraints required for land models, such as reference measurement heights, vegetation types and satellite-based monthly leaf area index estimates, are also included. For model evaluation, the dataset provides estimates of key water, carbon and energy variables, with the latent and sensible heat fluxes additionally corrected for energy balance closure. The dataset provides a total of 1040 site years covering the period 1992–2018, with individual sites spanning from 1 to 21 years. The dataset is available at http://dx.doi.org/10.25914/5fdb0902607e1 (Ukkola et al., 2021).


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 722
Author(s):  
Haruko M. Wainwright ◽  
Rusen Oktem ◽  
Baptiste Dafflon ◽  
Sigrid Dengel ◽  
John B. Curtis ◽  
...  

Land-atmosphere carbon exchange is known to be extremely heterogeneous in arctic ice-wedge polygonal tundra regions. In this study, a Kalman filter-based method was developed to estimate the spatio-temporal dynamics of daytime average net ecosystem exchange (NEEday) at 0.5-m resolution over a 550 m by 700 m study site. We integrated multi-scale, multi-type datasets, including normalized difference vegetation indices (NDVIs) obtained from a novel automated mobile sensor system (or tram system) and a greenness index map obtained from airborne imagery. We took advantage of the significant correlations between NDVI and NEEday identified based on flux chamber measurements. The weighted average of the estimated NEEday within the flux-tower footprint agreed with the flux tower data in term of its seasonal dynamics. We then evaluated the spatial variability of the growing season average NEEday, as a function of polygon geomorphic classes; i.e., the combination of polygon types—which are known to present different degradation stages associated with permafrost thaw—and microtopographic features (i.e., troughs, centers and rims). Our study suggests the importance of considering microtopographic features and their spatial coverage in computing spatially aggregated carbon exchange.


2021 ◽  
Vol 13 (13) ◽  
pp. 2448
Author(s):  
Tao Yu ◽  
Qiang Zhang ◽  
Rui Sun

Eddy covariance observation is an applicable way to obtain accurate and continuous carbon flux at flux tower sites, while remote sensing technology could estimate carbon exchange and carbon storage at regional and global scales effectively. However, it is still challenging to up-scale the field-observed carbon flux to a regional scale, due to the heterogeneity and the unstable air conditions at the land surface. In this paper, gross primary production (GPP) from ground eddy covariance systems were up-scaled to a regional scale by using five machine learning methods (Cubist regression tree, random forest, support vector machine, artificial neural network, and deep belief network). Then, the up-scaled GPP were validated using GPP at flux tower sites, weighted GPP in the footprint, and MODIS GPP products. At last, the sensitivity of the input data (normalized difference vegetation index, fractional vegetation cover, shortwave radiation, relative humidity and air temperature) to the precision of up-scaled GPP was analyzed, and the uncertainty of the machine learning methods was discussed. The results of this paper indicated that machine learning methods had a great potential in up-scaling GPP at flux tower sites. The validation of up-scaled GPP, using five machine learning methods, demonstrated that up-scaled GPP using random forest obtained the highest accuracy.


Sign in / Sign up

Export Citation Format

Share Document