Parasitism induces negative effects of physiological integration in a clonal plant

2020 ◽  
Vol 229 (1) ◽  
pp. 585-592
Author(s):  
Fang‐Lei Gao ◽  
Peter Alpert ◽  
Fei‐Hai Yu
Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Sergio R. Roiloa ◽  
Fei-Hai Yu ◽  
Rodolfo Barreiro

Management of invasive alien species is a high priority for biodiversity conservation. Here, we studied the effects of glyphosate application, at 0.06 g/m2 concentration, on physiologically integrated basal and apical ramets of the invasive clonal plant Carpobrotus edulis. Physiological integration allows the transport of resources and other substances between connected ramets in clonal plants. We found a significant reduction of growth and photochemical efficiency both in basal and apical ramets of C. edulis after glyphosate application. Interestingly, we also observed a significant growth reduction in untreated basal ramets when they remained connected to apical ramets treated with glyphosate. This result was interpreted as a cost for basal ramets due to supporting severely stressed apical ramets. Therefore, local application of glyphosate to apical ramets of C. edulis can negatively affect not only their own growth, but also the growth of their interconnected, untreated basal ramets. Our results suggest that glyphosate effectiveness can be maintained when applied only to one part of the clone so that the amount of herbicide used in eradication programs can be greatly reduced, which can minimize the negative impact of chemical herbicides on ecosystems.


2019 ◽  
Vol 12 (4) ◽  
pp. 662-672
Author(s):  
Rubén Portela ◽  
Bi-Cheng Dong ◽  
Fei-Hai Yu ◽  
Rodolfo Barreiro ◽  
Sergio R Roiloa

2020 ◽  
Vol 127 (1) ◽  
pp. 123-133
Author(s):  
Michael Opoku Adomako ◽  
Peter Alpert ◽  
Dao-Lin Du ◽  
Fei-Hai Yu

Abstract Background and Aims Clonal plants dominate many plant communities, especially in aquatic systems, and clonality appears to promote invasiveness and to affect how diversity changes in response to disturbance and resource availability. Understanding how the special physiological and morphological properties of clonal growth lead to these ecological effects depends upon studying the long-term consequences of clonal growth properties across vegetative generations, but this has rarely been done. This study aimed to show how a key clonal property, physiological integration between connected ramets within clones, affects the response of clones to disturbance and resources in an aquatic, invasive, dominant species across multiple generations. Methods Single, parental ramets of the floating stoloniferous plant Pistia stratiotes were grown for 3 weeks, during which they produced two or three generations of offspring; connections between new ramets were cut or left intact. Individual offspring were then used as parents in a second 3-week iteration that crossed fragmentation with previous fragmentation in the first iteration. A third iteration yielded eight treatment combinations, zero to three rounds of fragmentation at different times in the past. The experiment was run once at a high and once at a low level of nutrients. Results In each iteration, fragmentation increased biomass of the parental ramet, decreased biomass of the offspring and increased number of offspring. These effects persisted and compounded from one iteration to another, though more recent fragmentation had stronger effects, and were stronger at the low than at the high nutrient level. Fragmentation did not affect net accumulation of mass by groups after one iteration but increased it after two iterations at low nutrients, and after three iterations at both nutrient levels. Conclusions Both the positive and negative effects of fragmentation on clonal performance can compound and persist over time and can be stronger when resource levels are lower. Even when fragmentation has no short-term net effect on clonal performance, it can have a longer-term effect. In some cases, fragmentation may increase total accumulation of mass by a clone. The results provide the first demonstration of how physiological integration in clonal plants can affect fitness across generations and suggest that increased disturbance may promote invasion of introduced clonal species via effects on integration, perhaps especially at lower nutrient levels.


2018 ◽  
Vol 13 (1) ◽  
pp. 422-430
Author(s):  
Liang Xu ◽  
Xiao Wu ◽  
Dan Xiang

AbstractResource sharing between the connected ramets of clonal plants through physiological integration can increase the tolerance of plants to environmental stress. However, the role of physiological integration in the translocation of heavy-metal pollutants between different habitats receives little attention, especially in the aquatic-terrestrial ecotones. An amphibious clonal plant Alternanthera philoxeroides was used to simulate plant expansion from unpolluted soil to a chromium (Cr)-polluted water environment. Basal older ramets growing in unpolluted soil were connected or disconnected with apical younger ramets of the same fragments in polluted environments at different Cr concentrations. Harvested basal ramets were also used for decomposition tests for the loss of residual mass and release of Cr to soil. With increasing Cr concentration there was reduction in biomass of the apical ramets, especially those separated from the basal parts. Cr was detected in the basal ramets with connection to apical parts. The decomposition of plant litter from the basal ramets connected with polluted apical parts might release retained Cr to unpolluted soil. The amount and chemical forms of Cr in the plant litter changed over time. It is concluded that Cr could be transferred from polluted aquatic to unpolluted terrestrial habitats through amphibious clonal plants.


2014 ◽  
Vol 113 (7) ◽  
pp. 1265-1274 ◽  
Author(s):  
Fang-Li Luo ◽  
Yue Chen ◽  
Lin Huang ◽  
Ao Wang ◽  
Ming-Xiang Zhang ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 373
Author(s):  
Xiong Jing ◽  
Chunju Cai ◽  
Shaohui Fan ◽  
Guanglu Liu ◽  
Changming Wu ◽  
...  

Water is crucial to plant growth and development. Under heterogeneous environmental water deficiency, physiological integration of the rhizomatous clonal plant triggers a series of physiological cascades, which induces both signaling and physiological responses. It is known that the rhizome of Phyllostachys edulis, which connects associated clonal ramets, has important significance in this physiological integration. This significance is attributed to the sharing of water and nutrients in the vascular bundle of clonal ramets under heterogeneous water conditions. However, the physiological characteristics of physiological integration under heterogeneous water stress remain unclear. To investigate these physiological characteristics, particularly second messenger Ca2+ signaling characteristics, long-distance hormone signaling molecules, antioxidant enzyme activity, osmotic adjustment substance, and nitrogen metabolism, ramets with a connected (where integration was allowed to take place) and severed rhizome (with no integration) were compared in this study. The vascular bundle structure of the rhizome was also observed using laser confocal microscopy. Overall, the results suggest that interconnected rhizome of P. edulis can enhance its physiological function in response to drought-induced stress under heterogeneous water deficiency. These measured changes in physiological indices serve to improve the clonal ramets’ drought adaptivity through the interconnected rhizome.


Sign in / Sign up

Export Citation Format

Share Document