Small kernel 501 ( smk501 ) encodes the RUBylation activating enzyme E1 subunit ECR1 (E1 C‐TERMINAL RELATED 1) and is essential for multiple aspects of cellular events during kernel development in maize

2021 ◽  
Author(s):  
Quanquan Chen ◽  
Jie Zhang ◽  
Jie Wang ◽  
Yuxin Xie ◽  
Yu Cui ◽  
...  
2020 ◽  
Vol 71 (19) ◽  
pp. 5896-5910 ◽  
Author(s):  
Jie Zang ◽  
Yanqing Huo ◽  
Jie Liu ◽  
Huairen Zhang ◽  
Juan Liu ◽  
...  

Abstract Iron (Fe) is an essential micronutrient and plays an irreplaceable role in plant growth and development. Although its uptake and translocation are important biological processes, little is known about the molecular mechanism of Fe translocation within seed. Here, we characterized a novel small kernel mutant yellow stripe like 2 (ysl2) in maize (Zea mays). ZmYSL2 was predominantly expressed in developing endosperm and was found to encode a plasma membrane-localized metal–nicotianamine (NA) transporter ZmYSL2. Analysis of transporter activity revealed ZmYSL2-mediated Fe transport from endosperm to embryo during kernel development. Dysfunction of ZmYSL2 resulted in the imbalance of Fe homeostasis and abnormality of protein accumulation and starch deposition in the kernel. Significant changes of nitric oxide accumulation, mitochondrial Fe–S cluster content, and mitochondrial morphology indicated that the proper function of mitochondria was also affected in ysl2. Collectively, our study demonstrated that ZmYSL2 had a pivotal role in mediating Fe distribution within the kernel and kernel development in maize.


2013 ◽  
Vol 39 (5) ◽  
pp. 912 ◽  
Author(s):  
Jia-Jia MENG ◽  
Shu-Ting DONG ◽  
De-Yang SHI ◽  
Hai-Yan ZHANG

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 526d-526
Author(s):  
M. Freeman ◽  
C. Walters ◽  
M.A. Thorpe ◽  
T. Gradziel

Almond, as with other stone fruit, possesses a highly lignified endocarp or shell. The dominant hard-shelled trait (D-) is positively associated with greater resistant to insect infestation than nuts expressing the paper-shelled (dd) trait. Hard-shelled genotypes have undesirable effects, including a lower kernel meat-to-nut crack-out ratio, greater kernel damage during mechanical shelling, and a reduction in plant energy available to kernel development. Histogenic analysis shows that the almond endocarp, unlike peach, has a tri-partite structure. Insect feeding studies have subsequently demonstrated that the inner endocarp layer, which is similar in both hard and paper-shelled types, is the most important structural barrier to insect infestation. Shell-seal integrity and X-ray studies have confirmed that discontinuities at the inner endocarp suture seal are the primary, though not the sole site of entry for insect pests. Paper-shelled almond selections with highly lignified and well-sealed inner endocarps show resistance levels comparable to hard shelled types but with crack-out ratios 30% to 40% higher. Pseudo-paper-shelled types have also been selected, in which a highly lignified outer endocarp is formed, but is retained by the fruit hull at dehiscence. An understanding of endocarp morphology and development is thus important in breeding for insect resistance as well as the commercial utilization of both kernel and hull.


2016 ◽  
Vol 23 (19) ◽  
pp. 1965-1980 ◽  
Author(s):  
Branislav Rovcanin ◽  
Branislava Medic ◽  
Gordana Kocic ◽  
Tatjana Cebovic ◽  
Marko Ristic ◽  
...  

Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 89-91
Author(s):  
Shin-ichi Tate

The field of molecular biology has provided great insights into the structure and function of key molecules. Thanks to this area of research, we can now grasp the biological details of DNA and have characterised an enormous number of molecules in massive data bases. These 'biological periodic tables' have allowed scientists to connect molecules to particular cellular events, furthering scientific understanding of biological processes. However, molecular biology has yet to answer questions regarding 'higher-order' molecular architecture, such as that of chromatin. Chromatin is the molecular material that serves as the building block for chromosomes, the structures that carry an organism's genetic information inside of the cell's nucleus. Understanding the physical properties of chromatin is crucial in developing a more thorough picture of how chromatin's structure relate to its key cellular functions. Moreover, by establishing a physical model of chromatin, scientists will be able to open the doors into the true inner workings of the cell nucleus. Professor Shin-ichi Tate and his team of researchers at Hiroshima University's Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), are attempting to do just that. Through a five-year grant funded by the Platform for Dynamic Approaches to Living Systems from the Ministry of Education, Culture, Sports, Science and Technology, Tate is aiming to gain a clearer understanding of the structure and dynamics of chromatin.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chiharu Uchida

Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.


Sign in / Sign up

Export Citation Format

Share Document