BERM: a Belowground Ecosystem Resiliency Model for estimating Spartina alterniflora belowground biomass

2021 ◽  
Author(s):  
Jessica L. O’Connell ◽  
Deepak R. Mishra ◽  
Merryl Alber ◽  
Kristin B. Byrd
2017 ◽  
Author(s):  
Tracy Elsey-Quirk ◽  
Viktoria Unger

Abstract. Environmental conditions have a strong influence on rates plant productivity and decomposition. In salt marshes, hydrology and salinity are important regulators of plant and soil processes, which, in turn, can influence the rate at which marsh ecosystems accumulate C and adjust to sea-level rise. For this study, we examined the influence of multivariate environmental conditions on belowground ingrowth (roots + rhizomes), decomposition and biomass in marshes dominated by Spartina alterniflora across two estuaries and a range of geomorphic settings. Secondly, we examined the influence of belowground plant biomass to soil C density, and C (labile and refractory) accumulation and accretion rates. Study locations occupied a full range of tidal elevations from below mean low water to above mean high water. Salinities ranged from 7–40, and soil properties also varied across marshes. While many of the environmental parameters were correlated across marshes, belowground ingrowth of S. alterniflora was negatively influenced by mean low water height, such that root growth increased with more drainage. Belowground decay rate increased with increasing salinity, but ultimately the percent of mass remaining was similar across marshes, averaging 59 ± 1 %. Above- and belowground biomass dynamics were estuary-dependent. In the coastal lagoon estuary, less flooding and a higher sedimentation rate favored above-and belowground biomass, which, in turn, increased soil C accumulation and accretion rates. Biomass dynamics in the coastal plain estuary, for the most part, were unrelated to environmental predictor variables, and had little influence on the accumulation of soil C or accretion rate. These findings indicate that mineral sedimentation is of utmost importance for promoting belowground biomass and soil C accumulation in sediment-limited systems while in minerogenic systems, belowground biomass may not scale with C accumulation and accretion, which may be influenced more by smaller submillimetre-sized C particles.


1991 ◽  
Vol 36 (7) ◽  
pp. 1358-1374 ◽  
Author(s):  
Ronald Benner ◽  
Marilyn L. Fogel ◽  
E. Kent Sprague

Estuaries ◽  
1991 ◽  
Vol 14 (2) ◽  
pp. 180 ◽  
Author(s):  
Michael F. Gross ◽  
Michael A. Hardisky ◽  
Paul L. Wolf ◽  
Vytautas Klemas

2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


Sign in / Sign up

Export Citation Format

Share Document