Application of computational fluid dynamics models for the evaluation of salivary flow patterns and related bacterial accumulation around orthodontic brackets

2020 ◽  
Vol 23 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Jingyi Xue ◽  
Ping Zhu ◽  
Yifan He ◽  
Qianli Li ◽  
Yue Xu
1999 ◽  
Vol 39 (9) ◽  
pp. 161-168 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul ◽  
Andrew Drinkwater ◽  
Ian Clifforde

The use of computational fluid dynamics-based techniques for predicting the gross solids and finely suspended solids separation performance of structures within urban drainage systems is becoming well established. This paper compares the result of simulated flow patterns and gross solids separation predictions with field measurements made in a full size storage chamber. The gross solids retention efficiency was measured for six different storage chambers in the field and simulations of these chambers were undertaken using the Fluent computational fluid dynamics software. Differences between the observed and simulated flow patterns are discussed. The simulated flow fields were used to estimate chamber efficiency using particle tracking. Efficiency results are presented as efficiency cusps, with efficiency plotted as a function of settling velocity. The cusp represents a range of efficiency values, and approaches to the estimation of an overall efficiency value from these cusps are briefly discussed. Estimates of total efficiency based on the observed settling velocity distribution differed from the measured values by an average of ±17%. However, estimates of steady flow efficiency were consistently higher than the observed values. The simulated efficiencies agreed with the field observations in identifying the most efficient configuration.


2011 ◽  
Vol 39 (5) ◽  
pp. 1423-1437 ◽  
Author(s):  
Timothy J. Gundert ◽  
Shawn C. Shadden ◽  
Andrew R. Williams ◽  
Bon-Kwon Koo ◽  
Jeffrey A. Feinstein ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Sasan Partovi ◽  
Christoph Karmonik ◽  
Fabian Rengier ◽  
Matthias Mueller-Eschner ◽  
Hagen Meredig ◽  
...  

Introduction: Partial mechanical circulatory support (pMCS) is used for the therapy of heart failure. The CircuLite® Pump has been introduced clinically with its inflow cannula connected to the left atrium and the outflow cannula to the right subclavian artery. Aim of our study was to visualize and quantify flow patterns using computational fluid dynamics (CFD) in CT angiography (CTA). Methods: Two heart failure patients with pMCS were imaged with ECG-gated CTA and echocardiography. CFD was performed in 3D derived from CTA using flow boundary conditions measured with ultrasound. Flow was visualized using velocity vectors of blood flow. Average velocity was calculated at 10 time points during cardiac cycle in the aorta and the innominate. Wall shear stress (WSS) was visualized on the wall of the digital model. Results: Flow reversal was observed in mid-systole for both cases distal from the origin of the innominate artery in both cases due to asynchrony of the constant flow of the device with the pulsatile flow of the heart (fig.). Maximum velocity of this back flow was 0.39 m/s in case 1 and 0.2 m/s in case 2. Therefore, further distal in the innominate artery, a region of slow and stagnant flow with low WSS at the artery wall was observed which changed during cardiac cycle. Conclusions: CFD analysis revealed an asynchronous behavior in the inducted flow patterns during systole. Further design should allow for synchronization with the native heart function. Figure: On top flow during systole for both cases (case 1 on left), below flow during diastole. WSS is shown in pseudo-color representation with red indicating high values. Flow is visualized by arrows. During systole, a region of low WSS (blue) exists in the innominate artery which is absent during systole indicating flow reversal at this location. Bottom panel: Velocity in inferior-superior direction during cardiac cycle for both cases. Red lines demonstrates change of direction of flow in the innominate during systole.


Author(s):  
Gonçalo Mendonça ◽  
Frederico Afonso ◽  
Fernando Lau

The need of the aerospace industry, at national or European level, of faster yet reliable computational fluid dynamics models is the main drive for the application of model reduction techniques. This need is linked to the time cost of high-fidelity models, rendering them inefficient for applications like multi-disciplinary optimization. With the goal of testing and applying model reduction to computational fluid dynamics models applicable to lifting surfaces, a bibliographical research covering reduction of nonlinear, dynamic, or steady models was conducted. This established the prevalence of projection and least mean squares methods, which rely on solutions of the original high-fidelity model and their proper orthogonal decomposition to work. Other complementary techniques such as adaptive sampling, greedy sampling, and hybrid models are also presented and discussed. These projection and least mean squares methods are then tested on simple and documented benchmarks to estimate the error and speed-up of the reduced order models thus generated. Dynamic, steady, nonlinear, and multiparametric problems were reduced, with the simplest version of these methods showing the most promise. These methods were later applied to single parameter problems, namely the lid-driven cavity with incompressible Navier–Stokes equations and varying Reynolds number, and the elliptic airfoil at varying angles of attack for compressible Euler flow. An analysis of the performance of these methods is given at the end of this article, highlighting the computational speed-up obtained with these techniques, and the challenges presented by multiparametric problems and problems showing point singularities in their domain.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e37842 ◽  
Author(s):  
Robert H. Ong ◽  
Andrew J. C. King ◽  
Benjamin J. Mullins ◽  
Timothy F. Cooper ◽  
M. Julian Caley

2018 ◽  
Vol 45 (20) ◽  
Author(s):  
Yunxiang Chen ◽  
Xiaofeng Liu ◽  
Jason D. Gulley ◽  
Kenneth D. Mankoff

Author(s):  
Chang H. Oh ◽  
Eung S. Kim

Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy (DOE), is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena identification and ranking studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air-ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to a release of fission products into the confinement, which could be detrimental to reactor safety. Computational fluid dynamics models developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional (2-D) and three-dimensional (3-D) computational fluid dynamic (CFD) results for the quantitative assessment of the air ingress phenomena. A portion of the results from density-driven stratified flow in the inlet pipe will be compared with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document