Natal habitat effects drive density-dependent scaling of dispersal decisions

Oikos ◽  
2014 ◽  
Vol 123 (6) ◽  
pp. 699-704 ◽  
Author(s):  
Benjamin G. Van Allen ◽  
Preeya Bhavsar
2016 ◽  
Vol 113 (25) ◽  
pp. 6939-6944 ◽  
Author(s):  
Benjamin G. Van Allen ◽  
Volker H. W. Rudolf

Understanding how changes to the quality of habitat patches affect the distribution of species across the whole landscape is critical in our human-dominated world and changing climate. Although patterns of species’ abundances across a landscape are clearly influenced by dispersal among habitats and local species interactions, little is known about how the identity and origin of dispersers affect these patterns. Because traits of individuals are altered by experiences in their natal habitat, differences in the natal habitat of dispersers can carry over when individuals disperse to new habitats and alter their fitness and interactions with other species. We manipulated the presence or absence of such carried-over natal habitat effects for up to eight generations to examine their influence on two interacting species across multiple dispersal rates and different habitat compositions. We found that experimentally accounting for the natal habitat of dispersers significantly influenced competitive outcomes at all spatial scales and increased total community biomass within a landscape. However, the direction and magnitude of the impact of natal habitat effects was dependent upon landscape type and dispersal rate. Interestingly, effects of natal habitats increased the difference between species performance across the landscape, suggesting that natal habitat effects could alter competitive interactions to promote spatial coexistence. Given that heterogeneity in habitat quality is ubiquitous in nature, natal habitat effects are likely important drivers of spatial community structure and could promote variation in species performance, which may help facilitate spatial coexistence. The results have important implications for conservation and invasive species management.


2020 ◽  
Vol 645 ◽  
pp. 187-204
Author(s):  
PJ Rudershausen ◽  
JA Buckel

It is unclear how urbanization affects secondary biological production in estuaries in the southeastern USA. We estimated production of larval/juvenile Fundulus heteroclitus in salt marsh areas of North Carolina tidal creeks and tested for factors influencing production. F. heteroclitus were collected with a throw trap in salt marshes of 5 creeks subjected to a range of urbanization intensities. Multiple factor analysis (MFA) was used to reduce dimensionality of habitat and urbanization effects in the creeks and their watersheds. Production was then related to the first 2 dimensions of the MFA, month, and year. Lastly, we determined the relationship between creek-wide larval/juvenile production and abundance from spring and abundance of adults from autumn of the same year. Production in marsh (g m-2 d-1) varied between years and was negatively related to the MFA dimension that indexed salt marsh; higher rates of production were related to creeks with higher percentages of marsh. An asymptotic relationship was found between abundance of adults and creek-wide production of larvae/juveniles and an even stronger density-dependent relationship was found between abundance of adults and creek-wide larval/juvenile abundance. Results demonstrate (1) the ability of F. heteroclitus to maintain production within salt marsh in creeks with a lesser percentage of marsh as long as this habitat is not removed altogether and (2) a density-dependent link between age-0 production/abundance and subsequent adult recruitment. Given the relationship between production and marsh area, natural resource agencies should consider impacts of development on production when permitting construction in the southeastern USA.


Sign in / Sign up

Export Citation Format

Share Document