Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession

Oikos ◽  
2017 ◽  
Vol 126 (8) ◽  
pp. 1101-1111 ◽  
Author(s):  
Piotr Szefer ◽  
Carlos P. Carmona ◽  
Kryštof Chmel ◽  
Marie Konečná ◽  
Martin Libra ◽  
...  
2019 ◽  
Vol 125 (1) ◽  
pp. 145-155
Author(s):  
Dunmei Lin ◽  
Shufang Yang ◽  
Pengpeng Dou ◽  
Hongjuan Wang ◽  
Fang Wang ◽  
...  

Abstract Background and Aims The plant economics spectrum theory provides a useful framework to examine plant strategies by integrating the co-ordination of plant functional traits along a resource acquisition–conservation trade-off axis. Empirical evidence for this theory has been widely observed for seed plants (Spermatophyta). However, whether this theory can be applied to ferns (Pteridophyta), a ubiquitous and ancient group of vascular plants, has rarely been evaluated so far. Methods We measured 11 pairs of plant functional traits on leaves and fine roots (diameter <2 mm) on 12 coexisting fern species in a sub-tropical forest. Litterbags of leaves and roots were placed in situ and exposed for 586 d to measure decomposition rates. The variation of traits across species and the co-ordination among traits within and between plant organs were analysed. Finally, the influence of the traits on decomposition rates were explored. Key Results Most leaf and root traits displayed high cross-species variation, and were aligned along a major resource acquisition–conservation trade-off axis. Many fern traits co-varied between leaves and fine roots, suggesting co-ordinated responses between above- and below-ground organs. Decomposition rates of leaves were significantly higher than those of fine roots, but they were significantly and positively correlated. Finally, our results highlight that the decomposition of both leaves and roots was relatively well predicted by the leaf and root economics spectra. Conclusions Our results support the existence of an acquisition–conservation trade-off axis within ferns and indicate that traits have important ‘afterlife’ effects on fern litter decomposition. We conclude that the plant economics spectrum theory that is commonly observed across seed plants can be applied to ferns species, thereby extending the generality of this theory to this ancient plant lineage in our study site. Our study further suggests that the evolutionary and ecological basis for the relationships among key economics traits appears to be similar between ferns and seed plants. Future studies involving larger data sets will be required to confirm these findings across different biomes at larger spatial scales.


2018 ◽  
Vol 34 (6) ◽  
pp. 364-377 ◽  
Author(s):  
Sarai Sánchez-Silva ◽  
Bernardus H.J. De Jong ◽  
Deb R. Aryal ◽  
Esperanza Huerta-Lwanga ◽  
Jorge Mendoza-Vega

Abstract:Trends in structural and chemical leaf traits along a chronosequence of semi-evergreen tropical forest and their correlation with litter production and decomposition and associated carbon (C) and nitrogen (N) fluxes were assessed. Leaves of 15 dominant species in each plot were collected to measure leaf area, specific leaf area (SLA), C and N concentration and C:N ratio. Litterfall was measured and litter decomposition experiments were set up in 16 experimental plots in a chronosequence of secondary and mature forest. All five leaf traits combined discriminated the secondary forests from mature forest. SLA, N and C:N were significantly correlated to litter decomposition rates. Litter decomposition was significantly slower in mature forest compared with secondary forests. The N concentration of litter was lowest during the dry season, when litterfall was highest. N concentration in fresh leaves was higher than in litter, indicating that N is re-absorbed before leaf abscission. Leaf dynamics and associated nutrient cycling differ significantly between secondary forests and mature forest. Ecosystem-level leaf structural and chemical traits are good predictors of the stage of the forest and explain well the differences in decomposition rates between secondary and primary forests.


Ecosystems ◽  
2021 ◽  
Author(s):  
Miguel Berdugo ◽  
Dinorah O. Mendoza-Aguilar ◽  
Ana Rey ◽  
Victoria Ochoa ◽  
Beatriz Gozalo ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 25
Author(s):  
David Candel-Pérez ◽  
J. Bosco Imbert ◽  
Maitane Unzu ◽  
Juan A. Blanco

The promotion of mixed forests represents an adaptation strategy in forest management to cope with climate change. The mixing of tree species with complementary ecological traits may modify forest functioning regarding productivity, stability, or resilience against disturbances. Litter decomposition is an important process for global carbon and nutrient cycles in terrestrial ecosystems, also affecting the functionality and sustainability of forests. Decomposition of mixed-leaf litters has become an active research area because it mimics the natural state of leaf litters in most forests. Thus, it is important to understand the factors controlling decomposition rates and nutrient cycles in mixed stands. In this study, we conducted a litter decomposition experiment in a Scots pine and European beech mixed forest in the province of Navarre (north of Spain). The effects of forest management (i.e., different thinning intensities), leaf litter types, and tree canopy on mass loss and chemical composition in such decomposing litter were analysed over a period of three years. Higher decomposition rates were observed in leaf litter mixtures, suggesting the existence of positive synergies between both pine and beech litter types. Moreover, a decomposition process was favoured under mixed-tree canopy patches. Regarding thinning treatments significant differences on decomposition rates disappeared at the end of the study period. Time influenced the nutrient concentration after the leaf litter incubation, with significant differences in the chemical composition between the different types of leaf litter. Higher Ca and Mg concentrations were found in beech litter types than in pine ones. An increase in certain nutrients throughout the decomposition process was observed due to immobilization by microorganisms (e.g., Mg in all leaf litter types, K only in beech leaves, P in thinned plots and under mixed canopy). Evaluating the overall response in mixed-leaf litters and the contribution of single species is necessary for understanding the litter decomposition and nutrient processes in mixed-forest ecosystems.


2013 ◽  
Vol 57 ◽  
pp. 929-932 ◽  
Author(s):  
Pablo García-Palacios ◽  
Rubén Milla ◽  
Mónica Álvaro-Sánchez ◽  
Nieves Martín-Robles ◽  
Melchor Maestro

2021 ◽  
Author(s):  
Souparna Chakrabarty ◽  
Sheetal Sharma ◽  
Shatarupa Ganguly ◽  
Asmi Jezeera ◽  
Neha Mohanbabu ◽  
...  

AbstractLeaf phenology based classification of woody species into discrete evergreen and deciduous categories is widely used in ecology, but these categories hide important variation in leaf phenological behaviour. Few studies have examined the continuous nature of deciduousness and our understanding of variation in quantitative estimates of leaf shedding behaviour and the causes and consequences of this is limited. In this study we monitored leaf phenology in 75 woody species from a seasonally dry tropical forest to quantify three quantitative measures of deciduousness, namely: maximum canopy loss, duration of deciduousness, and average canopy loss. Based on proposed drought tolerance and drought avoidance strategies of evergreen and deciduous species, respectively, we tested whether the quantitative measures of deciduousness were related to leaf functional traits. Additionally, to understand the functional consequences of variation in deciduousness we examined relationships with the timing of leaf flushing and senescing. We found wide and continuous variation in quantitative measures of deciduousness in these coexisting species. Variation in deciduousness was related to leaf function traits, and the timing of leaf flushing. Along a continuous axis ranging from evergreen to deciduous species, increasing deciduousness was associated with more acquisitive leaf functional traits, with lower leaf mass per area and leaf dry matter content, and greater leaf nitrogen content. These results indicate that the continuous nature of deciduousness is an important component of resource acquisition strategies in woody species from seasonally dry forests.


Sign in / Sign up

Export Citation Format

Share Document