scholarly journals Host–parasite dynamics set the ecological theatre for the evolution of state‐ and context‐dependent dispersal in hosts

Oikos ◽  
2020 ◽  
Vol 130 (1) ◽  
pp. 121-132
Author(s):  
Jhelam N. Deshpande ◽  
Oliver Kaltz ◽  
Emanuel A. Fronhofer
2001 ◽  
Vol 212 (3) ◽  
pp. 345-354 ◽  
Author(s):  
THOMAS FLATT ◽  
NICOLAS MAIRE ◽  
MICHAEL DOEBELI

1997 ◽  
Vol 59 (3) ◽  
pp. 427-450 ◽  
Author(s):  
Veijo Kaitala ◽  
Mikko Heino ◽  
Wayne M. Getz

Author(s):  
Giacomo Zilio ◽  
Louise Solveig Noergaard ◽  
Giovanni Petrucci ◽  
Nathalie Zeballos ◽  
Claire Gougat-Barbera ◽  
...  

Dispersal plays a main role in determining spatial dynamics, and both theory and empirical evidence indicate that evolutionary optima exist for constitutive or plastic dispersal behaviour. Plasticity in dispersal can be influenced by factors both internal (state-dependent) or external (context-dependent) to individuals. Parasitism is interesting in this context, as it can influence both types of host dispersal plasticity: individuals can disperse in response to internal infection status but might also respond to the presence of infected individuals around them. We still know little about the driving evolutionary forces of host dispersal plasticity, but a first requirement is the presence of a genetic basis on which natural selection can act. In this study, we used microcosm dispersal mazes to investigate plastic dispersal of 20 strains of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. We additionally quantified the genetic component of the plastic responses, i.e. the heritability of state- and context-depended dispersal. We found that infection by the parasite can either increase or decrease dispersal of individual strains relative to the uninfected (state-dependent plasticity), and this to be heritable. We also found strain-specific change of dispersal of uninfected Paramecium when exposed to variable infection prevalence (context-dependent plasticity) with very low level of heritability. To our knowledge, this is the first explicit empirical demonstration and quantification of genetic variation of plastic dispersal in a host-parasite system, which could have important implications for meta-population and epidemiological dynamics. We discuss some of the underlying mechanisms of this variation and link our results to the existing theoretical models.


2021 ◽  
Author(s):  
Hannelore MacDonald ◽  
Dustin Brisson

Parasite-host interactions can result in periodic population dynamics when parasites over-exploit host populations. The timing of host seasonal activity, or host phenology, determines the frequency and demographic impact of parasite-host interactions which may govern if the parasite can sufficiently over-exploit their hosts to drive population cycles. We describe a mathematical model of a monocyclic, obligate-killer parasite system with seasonal host activity to investigate the consequences of host phenology on host-parasite dynamics. The results suggest that parasites can reach the densities necessary to destabilize host dynamics and drive cycling in only some phenological scenarios, such as environments with short seasons and synchronous host emergence. Further, only parasite lineages that are sufficiently adapted to phenological scenarios with short seasons and synchronous host emergence can achieve the densities necessary to over-exploit hosts and produce population cycles. Host-parasite cycles can also generate an eco-evolutionary feedback that slows parasite adaptation to the phenological environment as rare advantageous phenotypes are driven to extinction when introduced in phases of the cycle where host populations are small and parasite populations are large. The results demonstrate that seasonal environments can drive population cycling in a restricted set of phenological patterns and provides further evidence that the rate of adaptive evolution depends on underlying ecological dynamics.


2020 ◽  
Author(s):  
Damián Pérez‐Mazliah ◽  
Alexander I. Ward ◽  
Michael D. Lewis

Sign in / Sign up

Export Citation Format

Share Document