In vivo biophysical characterization of very high power, short duration, temperature‐controlled lesions

2021 ◽  
Vol 44 (10) ◽  
pp. 1717-1723
Author(s):  
Giuseppe Stabile ◽  
Vincenzo Schillaci ◽  
Teresa Strisciuglio ◽  
Alberto Arestia ◽  
Alessia Agresta ◽  
...  
2019 ◽  
Vol 5 (7) ◽  
pp. 778-786 ◽  
Author(s):  
Vivek Y. Reddy ◽  
Massimo Grimaldi ◽  
Tom De Potter ◽  
Johan M. Vijgen ◽  
Alan Bulava ◽  
...  

Author(s):  
Atsushi Suzuki ◽  
H. Immo Lehmann ◽  
Songyun Wang ◽  
Kay Parker ◽  
Kristi Monahan ◽  
...  

Introduction: The spatial thermodynamics of very high power-short duration (vHPSD) radiofrequency (RF) application during pulmonary vein isolation (PVI) in in-vivo model has not been well characterized. This study was conducted to investigate the distance-temperature relationship during vHPSD-RF ablation. Methods: PVI was performed using the vHPSD catheter with the settings of 90W, RF time of 4 sec and 15mL/min irrigation in a canine model. Catheter contact force (CF) of 10-20g was defined as ‘normal’ and CF >20g as ‘firm’ CF. Tissue temperature was monitored using thermocouples implanted at the surface of the left atrial-pulmonary vein junction, left phrenic nerve, and the luminal esophagus. PVI using a standard contact-force sensing catheter (SCF) (settings of 35W, 30sec and 30mL/min irrigation) was performed for comparison. Results: A total of 334 TC profiles in 4 animals was investigated. Time to maximum tissue temperature (MTT) (6.0sec [vHPSD/normal CF] vs. 30.5 sec [SCF/normal CF], p<0.001; 8.0sec [vHPSD/firm CF] vs. 24.0sec [SCF/firm CF], p=0.022) was shorter with vHPSD than in SCF groups. MTT within 10mm from catheter-tip was lower in vHPSD ablation with normal CF than using SCF ablation (median 41.9°C [interquartile-range; 40.2-46.1] vs. 49.5°C [45.9-56.2], p=0.013). The distance margin to keep the MTT below 39ºC, 42ºC, and 50ºC were 4.9mm, 4.2mm, and 3.4mm, respectively in the vHPDS group. This margin was larger (8.0mm, 6.6mm, and 4.6mm) in the SCF group. Conclusion: Our study underscores that vHPSD creates greater resistive heating than conventional catheter ablation.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
CH Heeger ◽  
MS Sano ◽  
RMS Meyer-Saraei ◽  
CE Eitel ◽  
HL Phan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Catheter ablation for atrial fibrillation (AF) treatment provides effective and durable PVI associated with encouraging clinical outcome. The novel QDot ablation catheter with Qmode + ablation mode (90W/4sec, Figure 1) offers the ability to possibly improve safety and decrease ablation procedure times. Aims We aim to evaluate safety and efficacy of the very high-power short-duration (vHP-SD) temperature-controlled radiofrequency (RF) ablation Qmode + mode for pulmonary vein isolation (PVI) utilizing the novel QDot micro ablation catheter. The data was compared to conventional power-controlled ablation index (AI) guided PVI. Methods Twenty-five consecutive patients with paroxysmal or persistent AF were prospectively enrolled, underwent vHP-SD based PVI (vHP-SD group) and were compared to 25 consecutive patients treated with conventional CF-sensing catheters (control). Results All PVs were successfully isolated utilizing Qmode +. The total median RF ablation time was vHP-SD: 334 (282, 369) sec. vs control: 1567 (1250, 1756) sec. (p &lt; 0.0001), the median procedure time was vHP-SD: 56 (48-62) vs. control: 104 (92-122) min (p &lt; 0.0001). No differences in periprocedural complications were observed. Conclusions The novel Qmode + provides safe and effective PVI with impressive short RF time and short procedures times. Procedure time and RF time were substantial lower in the vHP-SD group. Abstract Figure 1


Author(s):  
Roland Tilz ◽  
Makoto Sano ◽  
Julia Vogler ◽  
Thomas Fink ◽  
Roza Meyer-Saraei ◽  
...  

Background: Catheter ablation for atrial fibrillation (AF) treatment provides effective and durable pulmonary vein isolation (PVI) and is associated with encouraging clinical outcome. A novel CF sensing temperature-controlled radiofrequency (RF) ablation catheter allows for very high-power short-duration (vHP-SD, 90W/4 seconds) ablation aiming a potentially safer, more effective and faster ablation. We thought to evaluate preliminary safety and efficacy of vHP-SD ablation for PVI utilizing a novel vHP-SD catheter. The data was compared to conventional power-controlled ablation index (AI) guided PVI utilizing conventional contact force (CF) sensing catheters. Methods and Results: Fifty-six patients with paroxysmal or persistent AF were prospectively enrolled in this study. Twenty-eight consecutive patients underwent vHP-SD based PVI (vHP-SD group) and were compared to 28 consecutive patients treated with conventional CF-sensing catheters utilizing the AI (control group). All PVs were successfully isolated using vHP-SD. The median RF ablation time for vHP-SD was 338 (IQR 286, 367) seconds vs control 1580 (IQR 1350, 1848) seconds (p<0.0001), the median procedure duration was vHP-SD 55 (IQR 48-60) minutes vs. control 105 (IQR 92-120) minutes (p<0.0001). No differences in periprocedural complications were observed. Conclusions: This preliminary data of the novel vHP-SD ablation mode provides safe and effective PVI. Procedure duration and RF ablation time were substantially shorter in the vHP-SD group in comparison to the control group.


2007 ◽  
Vol 6 (12) ◽  
pp. 2214-2221 ◽  
Author(s):  
Lois M. Douglas ◽  
Li Li ◽  
Yang Yang ◽  
A. M. Dranginis

ABSTRACT The Flo11/Muc1 flocculin has diverse phenotypic effects. Saccharomyces cerevisiae cells of strain background Σ1278b require Flo11p to form pseudohyphae, invade agar, adhere to plastic, and develop biofilms, but they do not flocculate. We show that S. cerevisiae var. diastaticus strains, on the other hand, exhibit Flo11-dependent flocculation and biofilm formation but do not invade agar or form pseudohyphae. In order to study the nature of the Flo11p proteins produced by these two types of strains, we examined secreted Flo11p, encoded by a plasmid-borne gene, in which the glycosylphosphatidylinositol anchor sequences had been replaced by a histidine tag. A protein of approximately 196 kDa was secreted from both strains, which upon purification and concentration, aggregated into a form with a very high molecular mass. When secreted Flo11p was covalently attached to microscopic beads, it conferred the ability to specifically bind to S. cerevisiae var. diastaticus cells, which flocculate, but not to Σ1278b cells, which do not flocculate. This was true for the 196-kDa form as well as the high-molecular-weight form of Flo11p, regardless of the strain source. The coated beads bound to S. cerevisiae var. diastaticus cells expressing FLO11 and failed to bind to cells with a deletion of FLO11, demonstrating a homotypic adhesive mechanism. Flo11p was shown to be a mannoprotein. Bead-to-cell adhesion was inhibited by mannose, which also inhibits Flo11-dependent flocculation in vivo, further suggesting that this in vitro system is a useful model for the study of fungal adhesion.


Heart Rhythm ◽  
2020 ◽  
Author(s):  
Masateru Takigawa ◽  
Takeshi Kitamura ◽  
Claire A. Martin ◽  
Kristine Fuimaono ◽  
Keshava Datta ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document