A study on lethal doses of various pesticides on honeybees ( Apis mellifera L.) – a laboratory trial

2020 ◽  
Author(s):  
Mahnoor Pervez ◽  
Farkhanda Manzoor
Ecotoxicology ◽  
2014 ◽  
Vol 23 (9) ◽  
pp. 1659-1670 ◽  
Author(s):  
T. C. Roat ◽  
J. R. A. dos Santos-Pinto ◽  
L. D. dos Santos ◽  
K. S. Santos ◽  
O. Malaspina ◽  
...  

Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 340 ◽  
Author(s):  
Bartling ◽  
Vilcinskas ◽  
Lee

Insects play an important role in the stability of ecosystems by fulfilling key functions such as pollination and nutrient cycling, as well as acting as prey for amphibians, reptiles, birds and mammals. The global decline of insects is therefore a cause for concern, and the role of chemical pesticides must be examined carefully. The lethal effects of insecticides are well understood, but sub-lethal concentrations have not been studied in sufficient detail. We therefore used the western honeybee Apis mellifera as a model to test the effect of the neonicotinoid insecticide clothianidin on the movement, biosensory abilities and odor-dependent conditioning of insects, titrating from lethal to sub-lethal doses. Bees treated with sub-lethal doses showed no significant movement impairment compared to untreated control bees, but their ability to react to an aversive stimulus was inhibited. These results show that clothianidin is not only highly toxic to honeybees, but can, at lower doses, also disrupt the biosensory capabilities of survivors, probably reducing fitness at the individual level. In our study, sub-lethal doses of clothianidin altered the biosensory abilities of the honeybee; possible consequences at the colony level are discussed.


2020 ◽  
Vol 10 (07) ◽  
pp. 404-417
Author(s):  
Sanda Mazi ◽  
Toua Vroumsia ◽  
Marie-Noel Yahangar ◽  
Malloum Malla ◽  
Dawai Zroumba

Author(s):  
Awtar Krishan

Earle's L-929 fibroblasts treated with mitosis-arresting but sub-lethal doses of vinblastine sulfate (VLB) show hypertrophy of the granular endoplasmic reticulum and annulate lamellae. Exposure of the cells to heavier doses of vincristine sulfate (VCR), a VLB-related drug, leads to the accumulation of large amounts of helical polyribosomes, Golgi membranes and crystals in the cytoplasm. In many of these cells a large number of helical polyribosomes are arranged in prominent linear rows, some of which may be up to 5 micrometers in length. Figure 1 shows a large array of helical polyribosomes near a crystalline mass (CRS) in an Earle's L-929 fibroblast exposed to VCR (5ϒ/ml.) for 3 hours At a higher magnification, as seen in figure 2, the helical polyribosomes are seen arranged in parallel rows. In favorably cut sections, a prominent backbone like "stalk" of finely granular material, measuring approximately 300Å in width is seen in close association with the linear rows of helical polyribosomes.


Author(s):  
Maria Anna Pabst

In addition to the compound eyes, honeybees have three dorsal ocelli on the vertex of the head. Each ocellus has about 800 elongated photoreceptor cells. They are paired and the distal segment of each pair bears densely packed microvilli forming together a platelike fused rhabdom. Beneath a common cuticular lens a single layer of corneagenous cells is present.Ultrastructural studies were made of the retina of praepupae, different pupal stages and adult worker bees by thin sections and freeze-etch preparations. In praepupae the ocellar anlage consists of a conical group of epidermal cells that differentiate to photoreceptor cells, glial cells and corneagenous cells. Some photoreceptor cells are already paired and show disarrayed microvilli with circularly ordered filaments inside. In ocelli of 2-day-old pupae, when a retinogenous and a lentinogenous cell layer can be clearly distinguished, cell membranes of the distal part of two photoreceptor cells begin to interdigitate with each other and so start to form the definitive microvilli. At the beginning the microvilli often occupy the whole width of the developing rhabdom (Fig. 1).


1961 ◽  
Vol 37 (4) ◽  
pp. 565-576 ◽  
Author(s):  
Richard A. Miller

ABSTRACT Four per cent formaldehyde, insulin, or epinephrine in oil was injected for 5 days into pigeons subjected to varying degrees of hypophysectomy alone or together with large lesions in the median eminence and hypothalamus. Adrenals atrophied after the removal of the pars distalis alone or together with the neurohypophysis in untreated pigeons but showed markedly hypertrophic interrenal tissue (cortex in mammals) after treatment with formaldehyde or insulin. The slope of the dose-response curve was similar in operated and unoperated pigeons. The accumulation of bile in the liver parenchyma, which may occur after removal of the pars distalis, is an endogenous stress which was associated regularly with adrenal hypertrophy. After very large lesions of the median eminence and ventral hypothalamus in addition to total hypophysectomy, adrenals hypertrophied rather than atrophied, and the response to formaldehyde paralleled that in intact and »hypohysectomized« pigeons. Interrenal tissue was stimulated regularly; chromaffin tissue was partially degranulated, sometimes showed hyperplasia with colchicine, but only occasionally appeared hypertrophied. Epinephrine in nearly lethal doses caused only minimal adrenal enlargement. After adrenal denervation followed by hypophysectomy, the adrenals were still stimulated by formaldehyde. It appears that the interrenal tissue of the pigeon responds to a humoral stimulus not of hypophyseal origin in the absence of the hypophyseal-hypothalamic system.


Sign in / Sign up

Export Citation Format

Share Document