Small heat shock proteins and the postharvest chilling tolerance of tomato fruit

2016 ◽  
Vol 159 (2) ◽  
pp. 148-160 ◽  
Author(s):  
Martín D. Ré ◽  
Carla Gonzalez ◽  
Mariela R. Escobar ◽  
María Laura Sossi ◽  
Estela M. Valle ◽  
...  
HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 498D-498
Author(s):  
Konstantinos E. Vlachonasios ◽  
Dina K. Kadyrzhanova ◽  
David R. Dilley

Heat-treatment of mature-green tomato fruit (Lycopersicon esculentum) for 48 h at 42°C has been shown to prevent chilling injury from developing after 2 or 3 weeks at 2°C. Using mRNA differential display, we recently cloned and characterized a cDNA that encodes a cytosolic class II small heat-shock protein (Le HSP17.6). The mRNA of Le HSP17.6 is up-regulated during heat shock and the level of transcription remains high during subsequent storage at chilling temperatures. We used mRNA differential display with gene-specific primers from the other small HSPs families and find that the transcription of the other small heat-shock proteins is up-regulated during heat shock and persists at elevated levels at 2°C for at least 2 weeks. When the fruits are returned to a permissive ripening temperature after the chilling period, the mRNA of the small HSPs declines slowly for 3 days. These results suggest that the persistence of the small heat-shock proteins at low temperatures may provide protection against chilling injury.


2014 ◽  
Vol 21 (6) ◽  
pp. 564-571 ◽  
Author(s):  
Sourav Roy ◽  
Monobesh Patra ◽  
Suman Nandy ◽  
Milon Banik ◽  
Rakhi Dasgupta ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 84-96
Author(s):  
Sanchari Bhattacharjee ◽  
Rakhi Dasgupta ◽  
Angshuman Bagchi

Circulation ◽  
1997 ◽  
Vol 96 (12) ◽  
pp. 4343-4348 ◽  
Author(s):  
Jody L. Martin ◽  
Ruben Mestril ◽  
Randa Hilal-Dandan ◽  
Laurence L. Brunton ◽  
Wolfgang H. Dillmann

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 471-477
Author(s):  
J Roger H Frappier ◽  
David B Walden ◽  
Burr G Atkinson

Abstract Etiolated maize radicles (inbred Oh43) subjected to a brief heat shock synthesize a family of small heat shock proteins (≃18 kD) that is composed of at least 12 members. We previously described the cDNA-derived sequence of three maize shsp mRNAs (cMHSP18-1, cMHSP18-3, and cMHSP18-9). In this report, we demonstrate that the mRNA transcribed in vitro from one of these cDNAs (cMHSP 18-9) is responsible for the synthesis of three members of the shsp family, and we suggest that cMHSP18-3 may be responsible for the synthesis of three additional members and cMHSP18-1 for the synthesis of two other members of this family. The fact that these genes do not contain introns, coupled with the observations reported herein, suggest that maize may have established another method of using a single gene to produce a number of different proteins.


2009 ◽  
Vol 1793 (11) ◽  
pp. 1738-1748 ◽  
Author(s):  
Natalia de Miguel ◽  
Nathalie Braun ◽  
Alexander Bepperling ◽  
Thomas Kriehuber ◽  
Andreas Kastenmüller ◽  
...  

2015 ◽  
Vol 21 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Thomas Schmidt ◽  
Dietmar Fischer ◽  
Anastasia Andreadaki ◽  
Britta Bartelt-Kirbach ◽  
Nikola Golenhofen

Sign in / Sign up

Export Citation Format

Share Document