scholarly journals New coring study in Augusta Bay expands understanding of offshore tsunami deposits (Eastern Sicily, Italy)

Sedimentology ◽  
2020 ◽  
Vol 67 (3) ◽  
pp. 1553-1576 ◽  
Author(s):  
Alessandra Smedile ◽  
Flavia Molisso ◽  
Catherine Chagué ◽  
Marina Iorio ◽  
Paolo Marco De Martini ◽  
...  
2021 ◽  
Author(s):  
Valentin Nigg ◽  
Paola Bacigaluppi ◽  
David Florian Vetsch ◽  
Hendrik Vogel ◽  
Katrina Kremer ◽  
...  

2020 ◽  
Author(s):  
Piero Bellanova ◽  
Klaus Reicherter ◽  
Pedro J.M. Costa ◽  
Mike Frenken ◽  
Lisa Feist ◽  
...  

<p>Research on offshore tsunami deposits is scarce and their depositional processes and preservation potential are virtually unexplored. Therefore, the RV Meteor cruise M152 mapped and sampled one coast-parallel and two coast-perpendicular transects at water depths from 65 to 114 m off the Algarve coast (Portugal). This coast was strongly affected by the well-known Lisbon earthquake and tsunami of November 1<sup>st</sup>, 1755 AD. Numerous onshore locations have been well documented and studied with historic damage reports and modern scientific investigations of the onshore tsunami deposits. However, very scarce information about the backwash, the water masses flowing back into the sea, exists and their imprint on the shelf is unexplored.</p><p>In order to fill this gap, a total of 19 vibracores were recovered during the RV Meteor cruise M152. For tracing the sedimentary imprint of the AD 1755 tsunami and potential predecessors, a multi-proxy analysis was carried out (sedimentology, micropaleontology, inorganic and organic geochemistry, radiocarbon and OSL dating). Within the offshore Holocene stratigraphic record, at least two event layers of likely tsunami backwash origin were identified based on their significantly different properties compared to the background shelf sediments. The uppermost tsunami layer (at a depth of 16-25 cm in most cores) displays an erosional contact at the base with heterogeneous compositional changes; its bounding radiocarbon ages allow a correlation with the AD 1755 Lisbon tsunami. Organic-geochemical markers, such as n-alkanes, polycyclic aromatic hydrocarbons, steroids and fatty acids, show an increased input of terrestrial matter in this offshore AD 1755 event layer.</p><p>A surprising discovery was another distinct high-energy deposit, i.e. a potential predecessor to the AD 1755 Lisbon tsunami, at a core depth of about 122-155 cm, which was <sup>14</sup>C-dated to approx. 3700 yrs cal BP. Due to its erosional base and coarse-grained composition (well-sorted medium sand), as well as the increased terrestrial influence (displayed by biomarkers), it can be assumed that this deposit originates from the backwash of a paleo-tsunami.</p><p>This multi-proxy approach with sedimentological, micropaleontological, inorganic and organic-geochemical criteria, enabled us to (1) identify of backwash tsunami deposits; (2) establish a recurrence interval; and (3) estimate the hazard potential for the related coastal areas. Results of the M152 cruise demonstrate for the first time that the depositional basins on the Algarve shelf have the potential to reliably archive Holocene tsunami backwash deposits. The low-energy environment of the outer Algarve shelf sets prime conditions for the preservation of tsunami backwash deposits. Thus, these geoarchives offer the possibility to study the mechanisms and hydrodynamics of backwash currents, and to investigate tsunami strata that are not preserved elsewhere.</p>


2006 ◽  
Vol 76 (12) ◽  
pp. 1267-1273 ◽  
Author(s):  
R. Weiss ◽  
H. Bahlburg

2011 ◽  
Vol 63 (1) ◽  
pp. 241-266 ◽  
Author(s):  
Jan Smit ◽  
Cor Laffra ◽  
Karlien Meulenaars ◽  
Alessandro Montanari

Tsunamiites ◽  
2021 ◽  
pp. 183-192
Author(s):  
P.J.M. Costa ◽  
L. Feist ◽  
A.G. Dawson ◽  
I. Stewart ◽  
K. Reicherter ◽  
...  

2020 ◽  
Author(s):  
Beverly Goodman Tchernov

<p>The first physical field evidence for any dated tsunami event on the coast of Israel was discovered twenty years ago.  Since then, three campaigns of offshore core collections were completed with the aim of testing the validity of that interpretation, further completing the catalogue of known tsunami events, providing constraining data for models, determining associations with potential source tsunami-generating mechanisms, and assessing risk for purposes of emergency planning and coastal management.  Those follow-up coring campaigns provided many additional examples of anomalous sedimentary deposits that agreed with tsunami-derived interpretations and failed to fit criteria of other potential causes (e.g. floods, storms); reinforcing the theory that multiple tsunami events impacted that coastline and building a more complete record.  The interpretation of these offshore deposits has been improved by ongoing contributions from modern sedimentological studies following the set of recent megatsunamis.  Specifically, tsunami sediment characterization from modern tsunami studies has greatly improved the ability to recognize cryptic, anomalous deposits with higher confidence.  In addition, a small set of new land-based evidence has been identified, some of which match written historical records, and many that corroborate the offshore sedimentary record. In this presentation, a summary of these finds and the latest, most updated catalogue of events based on physical sedimentary deposits will be presented highlighting knowledge gained regarding variations in the efficacy of various proxies in the tsunami ‘tool box’ with relationship with this particular stretch of coastline.</p>


2017 ◽  
Author(s):  
Hui Tang ◽  
◽  
Robert Weiss
Keyword(s):  

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 46
Author(s):  
Bachtiar W. Mutaqin ◽  
Franck Lavigne ◽  
Patrick Wassmer ◽  
Martine Trautmann ◽  
Puncak Joyontono ◽  
...  

Indonesia is exposed to earthquakes, volcanic activities, and associated tsunamis. This is particularly the case for Lombok and Sumbawa Islands in West Nusa Tenggara, where evidence of tsunamis is frequently observed in its coastal sedimentary record. If the 1815 CE Tambora eruption on Sumbawa Island generated a tsunami with well-identified traces on the surrounding islands, little is known about the consequences of the 1257 CE tremendous eruption of Samalas on the neighboring islands, and especially about the possible tsunamis generated in reason of a paucity of research on coastal sedimentary records in this area. However, on Lombok Island, the eruption of the Samalas volcano produced significant volumes of pyroclastic flows that entered the sea in the North and East of the island. These phenomena must have produced a tsunami that left their traces, especially on Sumbawa Island, whose western coastline is only 14 km away from Lombok’s eastern shore. Therefore, the main goal of this study is to investigate, find evidence, and determine the age of marine-origin sediments along the shore of the Alas Strait, Indonesia. We collected and analyzed samples of coral and seashells from marine deposits identified along the west coast of Sumbawa, i.e., in Belang Island and abandoned fishponds in Kiantar Village, in order to identify the sources and the occurrence period of these deposits events. Based on the radiocarbon dating of coral and seashell samples, we concluded that none of the identified marine deposits along the western coast of Sumbawa could be related chronologically to the 1257 CE eruption of Samalas. However, possible tsunami deposits located in Belang Island and abandoned fishponds in Kiantar Village yielded 4th century CE, 9th century CE, and 17th century CE. We also conclude that past large earthquakes triggered these tsunamis since no known volcanic eruption occurred near the Alas Strait at that time that may have triggered a tsunami.


2014 ◽  
Vol 123 (6) ◽  
pp. 835-853 ◽  
Author(s):  
Takahiro WATANABE ◽  
Noriyoshi TSUCHIYA ◽  
Shin-ichi YAMASAKI ◽  
Ryoichi YAMADA ◽  
Nobuo HIRANO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document