scholarly journals Corrigendum to: Evolution of foreland basin fluvial systems in the mid‐Cretaceous of Utah, USA (upper Cedar Mountain and Naturita formations)

Sedimentology ◽  
2021 ◽  
2003 ◽  
Vol 24 (4) ◽  
pp. 439-448 ◽  
Author(s):  
Robert L. Brenner ◽  
Gregory A. Ludvigson ◽  
Brian L. Witzke ◽  
Preston Lee Phillips ◽  
Timothy S. White ◽  
...  

Sedimentology ◽  
2021 ◽  
Author(s):  
Stephen P. Phillips ◽  
John A. Howell ◽  
Adrian J. Hartley ◽  
Magda Chmielewska ◽  
Samuel M. Hudson

2021 ◽  
Vol 91 (11) ◽  
pp. 1188-1205
Author(s):  
Stephen P. Phillips ◽  
John A. Howell ◽  
Adrian J. Hartley ◽  
Magda Chmielewska

ABSTRACT The analysis of downstream changes in ancient fluvial systems can better inform depositional models for foreland-basin systems. Herein we analyze the basal deposits of the Early Cretaceous Cedar Mountain Formation of Utah to better understand the variety of fluvial deposits present and to develop a depositional model for the Sevier foreland basin. We also evaluate the long-held interpretation of a braided origin for these deposits and document numerous examples of point-bar deposition in highly sinuous meandering rivers by analysis of large (20 to 60 km2) plan-view exposures. These plan-view exposures allow comparisons between planform and cross-sectional geometries. The study utilizes outcrop data, virtual outcrop models, and satellite imagery to develop a facies model and analyze the architecture of channel bodies in the Buckhorn Conglomerate and Poison Strip Sandstone of the Cedar Mountain Formation. We document downstream (west to east) decreases in lateral channel migration, sinuosity, channel amalgamation, grain size, and percent of fluvial channel facies (conglomerate and sandstone). Fluvial channel deposits occur arranged into larger stratal bodies: multistory–multilateral channel bodies that are dominantly composed of clast-supported conglomerate in the west to a mix of multistory, multilateral, and isolated channel bodies composed of matrix-supported conglomerate in the east. The median width of highly sinuous point bars is similar across the field area (344 m to 477 m), but the inclusion of narrower (median = 174 m), low-sinuosity bar elements in the east indicates an overall reduction in lateral channel migration and sinuosity downstream. Net-to-gross values range from 100% in much of the western outcrops to as low as 38% in the east. Paleocurrent analysis reveals a transverse (west to east) paleoflow for the study interval that merges with axial (south–north) paleoflow near the Utah–Colorado state line. We estimate 104 m3/s-scale discharge and 106 kilometer-scale drainage area for axial rivers based on paleohydraulic analysis which represents a significant part of the Early Cretaceous continental-scale drainage. The observed downstream trends in lateral channel migration, sinuosity, channel amalgamation, grain size, and net-to-gross for the basal Cedar Mountain Formation are consistent with expected trends for sinuous single-thread distributive fluvial systems and are similar to observed trends in the Jurassic Morrison Formation. Medial (Buckhorn Conglomerate) to distal (Poison Strip Sandstone) zones are preserved and span the forebulge to backbulge depozones of a foreland-basin system. Postulated deposits of the proximal distributive fluvial system have been removed during erosion of the foredeep depozone. The easternmost Poison Strip Sandstone and coeval Burro Canyon Formation represent deposits of an axial system at which western-sourced distributive fluvial systems end. Distributive fluvial systems dominate modern foreland basins, and this study suggests that they may constitute a significant proportion of ancient successions.


2020 ◽  
Vol 90 (8) ◽  
pp. 777-795
Author(s):  
Stephen P. Phillips ◽  
John A. Howell ◽  
Adrian J. Hartley ◽  
Magda Chmielewska

ABSTRACT Thin tidal estuarine deposits of the Naturita Formation (0–23 m) of the San Rafael Swell record the initial flooding of the Cretaceous Western Interior Seaway, Utah, and capture the transition from inland fluvial systems to fully marine conditions over a time period of 5 My or less. A tide-dominated estuarine environment is favored due to the combined presence of mud and/or carbonaceous drapes on ripples and dunes, bidirectional flow indicators, sigmoidal cross-stratification, herring-bone cross-stratification, and bimodal paleocurrent measurements. Facies associations are arranged in a predictable manner. Locally at the base of the Naturita Formation, tidally influenced fluvial channel deposits are present. These are overlain by tidal bars, including subtidal bars and intertidal point bars. Overlying the tidal bars are sand-flat and mud-flat deposits as well as bedded coal and carbonaceous mudstone that represents a supratidal setting in the estuary. The Formation can be capped by a thin transgressive lag composed of shell debris, and/or pebbles, that marks the final transition into the fully marine Tununk Shale Member of the overlying Mancos Shale. Lateral relationships between estuaries and adjacent paleohighs shed light on the influence of foreland-basin tectonics on the location and preservation of tide-dominated estuaries. Estuarine and shoreface deposits are absent along the eastern flank of the San Rafael Swell and eastward for more than 80 km. This zone of nondeposition or erosion is coincident with the location of the forebulge in the developing foreland basin, implying that growth of the forebulge prohibited the development of, or enhanced the later erosion of, estuarine deposits. Conversely, enhanced accommodation in the transition into the foredeep depozone allow the preservation of tide-dominated estuarine deposits along the western flank of the San Rafael Swell. Additionally, the possibility of a pre-Laramide tectonic history for the San Rafael Swell is indicated by a distinct lack of Naturita Formation deposits in an area that is coincident with the modern-day axis of the anticline. Overall, the Naturita records the initial flooding of the Western Interior Seaway in the San Rafael Swell region and provides an excellent case study of the deposits that are laid down in a transgressive system that passes from coastal-plain to offshore deposits.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Jennifer N. Gifford ◽  
Elizabeth J. Vitale ◽  
Brian F. Platt ◽  
David H. Malone ◽  
Inoka H. Widanagamage

We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County, Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input. The stratigraphic positions of the montmorillonitic sands suggest that these deposits represent some of the youngest Late Cretaceous volcanism in the MSE.


Sign in / Sign up

Export Citation Format

Share Document