EARLY PENNSYLVANIAN SEDIMENT ROUTING FROM DISTINCT FLUVIAL SYSTEMS WITHIN THE APPALACHIAN FORELAND BASIN SYSTEM TO DEEP-SEA FANS

2020 ◽  
Author(s):  
Isaac Allred ◽  
◽  
Mike Blum
Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Jennifer N. Gifford ◽  
Elizabeth J. Vitale ◽  
Brian F. Platt ◽  
David H. Malone ◽  
Inoka H. Widanagamage

We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County, Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input. The stratigraphic positions of the montmorillonitic sands suggest that these deposits represent some of the youngest Late Cretaceous volcanism in the MSE.


1995 ◽  
Vol 19 (4) ◽  
pp. 500-519 ◽  
Author(s):  
A.P. Nicholas ◽  
P.J. Ashworth ◽  
M.J. Kirkby ◽  
M.G. Macklin ◽  
T. Murray

Variations in fluvial sediment transport rates and storage volumes have been described previously as sediment waves or pulses. These features have been identified over a wide range of temporal and spatial scales and have been categorized using existing bedform classifications. Here we describe the factors controlling the generation and propagation of what we term sediment slugs. These can be defined as bodies of clastic material associated with disequilibrium conditions in fluvial systems over time periods above the event scale. Slugs range in magnitude from unit bars (Smith, 1974) up to sedimentary features generated by basin-scale sediment supply disturbances (Trimble, 1981). At lower slug magnitudes, perturbations in sediment transport are generated by local riverbank and/or bed erosion. Larger-scale features result from the occurrence of rare high- magnitude geomorphic events, and the impacts on water and sediment production of tectonics, glaciation, climate change and anthropogenic influences. Simple sediment routing functions are presented which may be used to describe the propagation of sediment slugs in fluvial systems. Attention is drawn to components of the fluvial system where future research is urgently required to improve our quantitative understanding of drainage-basin sediment dynamics.


2018 ◽  
Vol 116 ◽  
pp. 94-113 ◽  
Author(s):  
Vincenzo La Bruna ◽  
Fabrizio Agosta ◽  
Juliette Lamarche ◽  
Sophie Viseur ◽  
Giacomo Prosser

2021 ◽  
Author(s):  
Rocio Jaimes-Gutierrez ◽  
Thierry Adatte ◽  
Emmanuelle Puceat ◽  
Jean Braun ◽  
Sebastien Castelltort

<p>The Paleocene and early Eocene were periods yielding multiple hyperthermal events. The most pronounced of them was the Paleocene-Eocene Thermal Maximum (PETM), which was characterized by an abrupt increase in global temperature (5–8 °C) over a short time (20 ka). A negative carbon isotope excursion marks the onset of the PETM, which resulted in the fast injection of CO<sub>2</sub> into the ocean-atmosphere system, triggering global climatic changes. Geochemical, mineralogical, and sedimentological markers record the resulting increase in continental weathering. This is important, as enhanced chemical erosion influences both the CO<sub>2</sub> concentration in the atmosphere and ocean acidity, generating a feedback mechanism. Hence, constraining the rates and intensity of weathering response can further clarify the causes for the PETM and Eocene hyperthermals. This study focuses on the well-preserved Pyrenean foreland basin and intends to assess the continental chemical weathering response of the sediment routing system during the PETM. Clay mineralogy is a climate-sensitive proxy, which records changes in continental erosion. Therefore, clay mineral proportions will be analyzed using X-ray diffraction and major element chemistry on clay-rich samples from the entire source-to-sink system (continental to deep marine deposits). Kaolinite and smectite will be separated from the detrital clay fraction and further subjected to δ<sup>18</sup>O and δD isotopic analysis for paleoclimatic reconstruction. The combined Lu-Hf and Sm-Nd isotope systems in the clay fraction of the sediments will be used to track the evolution of chemical weathering intensity. The outcome of this project will serve to validate numerical models to understand erosion as a function of rapid climatic change. This topic is of keen interest, as the PETM and its sedimentological signal work as a natural analog for anthropogenically-induced climatic change. The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 860383.</p>


Sign in / Sign up

Export Citation Format

Share Document