scholarly journals Skeletal muscle IL-15/IL-15Rα and myofibrillar protein synthesis after resistance exercise

2017 ◽  
Vol 28 (1) ◽  
pp. 116-125 ◽  
Author(s):  
A. Pérez-López ◽  
J. McKendry ◽  
M. Martin-Rincon ◽  
D. Morales-Alamo ◽  
B. Pérez-Köhler ◽  
...  
Author(s):  
Brandon J. Shad ◽  
Janice L. Thompson ◽  
James Mckendry ◽  
Andrew M. Holwerda ◽  
Yasir S. Elhassan ◽  
...  

The impact of resistance exercise frequency on muscle protein synthesis rates remains unknown. The aim of this study was to compare daily myofibrillar protein synthesis rates over a 7-day period of low-frequency (LF) versus high-frequency (HF) resistance exercise training. Nine young men (21 ± 2 years) completed a 7-day period of habitual physical activity (BASAL). This was followed by a 7-day exercise period of volume-matched, LF (10 × 10 repetitions at 70% one-repetition maximum, once per week) or HF (2 × 10 repetitions at ∼70% one-repetition maximum, five times per week) resistance exercise training. The participants had one leg randomly allocated to LF and the other to HF. Skeletal muscle biopsies and daily saliva samples were collected to determine myofibrillar protein synthesis rates using 2H2O, with intracellular signaling determined using Western blotting. The myofibrillar protein synthesis rates did not differ between the LF (1.46 ± 0.26%/day) and HF (1.48 ± 0.33%/day) conditions over the 7-day exercise training period (p > .05). There were no significant differences between the LF and HF conditions over the first 2 days (1.45 ± 0.41%/day vs. 1.25 ± 0.46%/day) or last 5 days (1.47 ± 0.30%/day vs. 1.50 ± 0.41%/day) of the exercise training period (p > .05). Daily myofibrillar protein synthesis rates were not different from BASAL at any time point during LF or HF (p > .05). The phosphorylation status and total protein content of selected proteins implicated in skeletal muscle ribosomal biogenesis were not different between conditions (p > .05). Under the conditions of the present study, resistance exercise training frequency did not modulate daily myofibrillar protein synthesis rates in young men.


Author(s):  
George Frederick Pavis ◽  
Tom SO Jameson ◽  
Marlou L. Dirks ◽  
Benjamin P. Lee ◽  
Doaa Reda Abdelrahman ◽  
...  

The contribution of myofibrillar protein synthesis (MyoPS) to recovery from skeletal muscle damage in humans is unknown. Recreationally active males and females consumed a daily protein-polyphenol beverage targeted at increasing amino acid availability and reducing inflammation (PPB; n=9), both known to affect MyoPS, or an isocaloric placebo (PLA; n=9) during 168 h of recovery from 300 maximal unilateral eccentric contractions (EE). Muscle function was assessed daily. Muscle biopsies were collected 24, 27, 36, 72 and 168 h for MyoPS measurements using 2H2O and expression of 224 genes using RT-qPCR and pathway analysis. PPB improved recovery of muscle function, which was impaired for five days following EE in PLA (interaction; P<0.05). Acute postprandial MyoPS rates were unaffected by nutritional intervention (24-27 h). EE increased overnight (27-36 h) MyoPS versus control leg (PLA: 33±19%; PPB: 79±25%; leg P<0.01), and PPB tended to increase this further (interaction P=0.06). Daily MyoPS rates were greater with PPB between 72-168 h after EE, albeit after function had recovered. Inflammatory and regenerative signaling pathways were dramatically upregulated and clustered following EE but were unaffected by nutritional intervention. These results suggest that accelerated recovery from EE is not explained by elevated MyoPS or suppression of inflammation.


2018 ◽  
Vol 596 (21) ◽  
pp. 5119-5133 ◽  
Author(s):  
Joseph W. Beals ◽  
Sarah K. Skinner ◽  
Colleen F. McKenna ◽  
Elizabeth G. Poozhikunnel ◽  
Samee A. Farooqi ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 57 ◽  
Author(s):  
Yifan Yang ◽  
Tyler A Churchward-Venne ◽  
Nicholas A Burd ◽  
Leigh Breen ◽  
Mark A Tarnopolsky ◽  
...  

2012 ◽  
Vol 108 (6) ◽  
pp. 958-962 ◽  
Author(s):  
Nicholas A. Burd ◽  
Yifan Yang ◽  
Daniel R. Moore ◽  
Jason E. Tang ◽  
Mark A. Tarnopolsky ◽  
...  

We aimed to determine the effect of consuming pure isolated micellar casein or pure whey protein isolate on rates of myofibrillar protein synthesis (MPS) at rest and after resistance exercise in elderly men. Healthy elderly men (72 (sem 1) years; BMI 26·4 (sem 0·7) kg/m2) were divided into two groups (n 7 each) who received a primed, constant infusion of l-[ring-13C6]phenylalanine to measure MPS at rest and during 4 h of exercise recovery. Participants performed unilateral leg resistance exercise followed by the consumption of isonitrogenous quantities (20 g) of casein or whey. Blood essential amino acids and leucine concentration peaked 60 min post-drink and were greater in amplitude after whey protein ingestion (both, P < 0·05). MPS in the rested leg was 65 % higher (P = 0·002) after ingestion of whey (0·040 (sem 0·003) %/h) when compared with micellar casein (0·024 (sem 0·002) %/h). Similarly, resistance exercise-stimulated rates of MPS were greater (P < 0·001) after whey ingestion (0·059 (sem 0·005) %/h) v. micellar casein (0·035 (sem 0·002) %/h). We conclude that ingestion of isolated whey protein supports greater rates of MPS than micellar casein both at rest and after resistance exercise in healthy elderly men. This result is probably related to a greater hyperaminoacidaemia or leucinaemia with whey ingestion.


Sign in / Sign up

Export Citation Format

Share Document